MASS 2023 Course: Gravitation and Cosmology

Predrag Jovanović Astronomical Observatory Belgrade

Lecture 01

- Gravitational field
- Brief overview of Newton's theory of gravity
- General Relativity (GR) as a geometric theory of gravitation
- Concept of spacetime:
 - events
 - worldlines
- Einstein summation convention
- General coordinate transformations
- Some basic mathematical concepts:
 - Manifolds
- Exercises

Gravitational field

- In physics, a field is a physical quantity, represented by a scalar, vector or tensor, that has a value for each point in space and time
- A function assigning a scalar, vector, or tensor to each point in space and time:
 - scalar fields (temperature, humidity, pressure, ...)
 - vector fields (Newton's gravitational field, electric field, ...)
 - tensor fields (stress and strain in materials, Riemann curvature tensor, ...)
- Gravitational field in Newton's theory of gravity is a vector field that exists in the space around every mass
- In contrast, gravity in General Relativity (GR) is not due to an effective force field, but a result of spacetime curvature

In Newton's theory of gravity, mass is the source of a gravitational field \vec{g}

Newton's theory of gravity

- The gravitational force between two objects of masses M and m separated by a vector \vec{r} : $\vec{F}(\vec{r}) = -\frac{GMm}{r^2}\hat{\vec{r}}$
- The force acts on particle of mass m and gives it an acceleration according to Newton's second law: $\vec{F}(\vec{r}) = m \vec{g}(\vec{r})$
- Gravitational field is described by gravitational acceleration: $\vec{g}(\vec{r}) = -\frac{GM}{r^2}\hat{\vec{r}}$
- Equivalently, the gravitational potential Φ is related to the mass density ρ by Poisson's equation: $\nabla^2 \Phi = 4\pi G \rho$
- The acceleration is then given by the gradient of the potential: $\vec{g}(\vec{r}) = -\nabla \Phi(\vec{r})$

• In the case of point mass *M*, Newton's gravitational potential is: $\Phi(r) = -\frac{GM}{r}$ • Gradient: $\nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)$

- Laplace operator: $\Delta f = \nabla^2 f = \nabla \cdot \nabla f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}$ (divergence $\nabla \cdot$ of gradient ∇)
- Divergence of a vector $\vec{F} = F_x \vec{i} + F_y \vec{j} + F_z \vec{k}$: $\operatorname{div} \vec{F} = \nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$

General Relativity (GR)

- GR is the standard theory of gravity, formulated by Albert Einstein in 1915
- It describes gravitation in terms of differential geometry of curved spacetime
- Fundamental interaction of gravitation as a result of spacetime being curved by matter and energy is described by field equations of GR:

Concept of spacetime

- **Spacetime** is a 4-dimensional set with elements labeled by 3 dimensions of space and 1 of time
- Event is an individual point in spacetime
- Worldline is a curve through spacetime (a parametrized 1dimensional set of events), representing the path of a particle
- In Newtonian mechanics there is:
 - -no limit on particle velocity

- -absolute division of spacetime into well-defined slices of space at a fixed moment in time
- -notion of **absolute simultaneity** of two events which occur at the same time
- -absolute space: the spatial interval between two simultaneous events is observer independent
- absolute time: time interval between two events has absolute significance and all observers agree on its value
- Euclidean geometry: space interval Δl between two simultaneous events is given by Pythagorean theorem: $\Delta l^2 = (x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2$

Some important notation and conventions

- From now on we will use the following notation and convention:
 - -Greek indices (α , β , ...) run from 0 to 3
 - -Lower-case latin indices (a, b, ...) run from 1 to 3
 - -Einstein summation convention: indices which appear both as superscripts and subscripts are summed over
- Example: $y = \sum_{i=1}^{6} c_i x^i = c_1 x^1 + c_2 x^2 + c_3 x^3$ is simplified to: $y = c_i x^i$ $x^0 = ct$
- The superscripts are not exponents but are indices of coordinates on spacetime, with 0 denoting the time coordinate: x^{μ} :
- General coordinate transformations (which must be invertible) and their inverse transformations:

$$x^{\mu} \to x^{\mu'} = x^{\mu'} \left(x^0, x^1, x^2, x^3 \right)$$
$$x^{\mu'} \to x^{\mu} = x^{\mu} \left(x^{0'}, x^{1'}, x^{2'}, x^{3'} \right)$$

 $x^1 = x$

 $x^2 = y$

 $x^3 = z$

- A quantity is **invariant** if its value is unchanged under coordinate transformations
- An equation is **covariant** if its form is unchanged under coordinate transformations

GR as a geometric theory of gravity

Physics	Geometry
• When and the where of a physical phenomenon constitute an event.	• An event is a point in a topological space
• The set of all events is a continuous space, named spacetime	 Spacetime is a differentiable manifold M
• Gravitational phenomena are manifestations of the geometry of spacetime	• The gravitational field is a metric g on M
• Point-like particles move in spacetime following special world-lines that are " straight "	 Straight lines are geodesics
• The laws of physics are the same for all observers	 Field equations are generally covariant
Spacetime = Differentiable Manifold	

• Newtonian gravity vs. GR:

Gravitational Potentials = Metric

Forces = Connections

Some basic mathematical concepts

- Mathematical space is a set of elements called points with some additional features on the set (e.g. an operation, relation, metric or topology)
- **Topology** is set of neighborhoods for each point that satisfy some axioms of closeness
- **Topological space** is a mathematical space with topology (i.e. a mathematical space in which closeness is defined but cannot necessarily be measured by a numeric distance)
- Topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness
- Types of topological spaces: Euclidean spaces, metric spaces and manifolds
- *n*-dimensional **Euclidean space** is set **R**^{*n*} of all *n*-tuples of real numbers (*x*¹, ...,*x*^{*n*}), equipped with the scalar (dot or inner) product of two vectors
- Metric space is an ordered pair (*M*, *d*) where *M* is a set of points and *d* is a function called **metric** on *M* which measures distance between the points.
 - -A simple example is Euclidean space \mathbf{R}^3 equipped with Euclidean metric *d*:

$$d((x_1, y_1, z_1), (x_2, y_2, z_2)) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Manifolds

- Manifold (or differentiable manifold) is a topological space which may be curved and have a complicated topology, but locally looks like Euclidean space **R**^{*n*} near each point
- Manifold is constructed by smoothly joining together the Euclidean-like local regions

Exam question

1. Spacetime as differentiable manifold

Literature

• Textbook: Sean M. Carroll, 1997. Lecture Notes on General Relativity, arXiv, gr-qc/9712019

Exercise 1

• Write down $X_{ij}Y^{ij}$ explicitly as a sum of terms in n = 2 and n = 3 dimensions, respectively

Exercise 2

• Write down $X_i Y^{ij} X_j$ explicitly as a sum of terms in n = 2 and n = 3 dimensions, respectively, assuming the following symmetry: $Y^{ij} = Y^{ji}$

Solution 1

- In n = 2 dimensions: $X_{ij}Y^{ij} = X_{11}Y^{11} + X_{12}Y^{12} + X_{21}Y^{21} + X_{22}Y^{22}$
- In n = 3 dimensions:

$$\begin{aligned} X_{ij}Y^{ij} &= X_{11}Y^{11} + X_{12}Y^{12} + X_{13}Y_{13} + X_{21}Y^{21} + X_{22}Y^{22} + \\ &+ X_{23}Y^{23} + X_{31}Y^{31} + X_{32}Y^{32} + X_{33}Y^{33} \end{aligned}$$

Solution 2

- In n = 2 dimensions: $X_i Y^{ij} X_j = Y^{11} (X_1)^2 + 2Y^{12} X_1 X_2 + Y^{22} (X_2)^2$
- In n = 3 dimensions:

$$X_i Y^{ij} X_j = Y^{11} (X_1)^2 + 2Y^{12} X_1 X_2 + 2Y^{13} X_1 X_3 + Y^{22} (X_2)^2 + 2Y^{23} X_2 X_3 + Y^{33} (X_3)^2$$