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Lecture 03

● Spacetime as 4-dimensional pseudo-Riemannian manifold

─Metric (fundamental) tensor

● Tensor algebra

─Linear combination of tensors

─Direct product of tensors (see the previous lecture)

─Contraction of tensors

─Raising and lowering indices of tensors

─Scalar product of vectors

─Inner product of two tensors

─The quotient theorem

─Symmetric and antisymmetric tensors

● Exercises



Spacetime as 4-dimensional manifold
● GR is a metric theory of gravitation in which 4-dimensional pseudo-Riemannian 

manifold M equipped with a Riemannian metric g is representing spacetime
● Pair (M, g) is the mathematical model of spacetime in GR
● Pseudo-Riemannian manifold is a differentiable manifold with a metric tensor     

that is everywhere non-degenerate, meaning that the determinant                  doesn't 
vanish and thus        is invertible

● Covariant metric tensor is a symmetric type (0, 2) tensor:                     and thus it 
has 10 independent components

● Spacetime interval ds between two events with a given infinitesimal coordinate 
separation is determined by the metric tensor       :

● ds2 is invariant under general coordinate transformations:

● Contravariant metric tensor        is the inverse of          so that                         

where       is the Kronecker delta symbol:

●       is a mixed tensor, and aside from the scalars and zero (i.e.  a tensor with all 
components equal to zero),       (together with its direct products) is the only tensor 
whose components are the same in all coordinate systems



● Metric tensor        is one of the most important features of curved space due to its 
numerous very significant roles, such as:
─it supplies a notion of "past'" and "future"
─it allows the computation of path length and proper time;
─it determines the "shortest distance" between two points (and therefore the motion 

of test particles)
─it replaces the Newtonian gravitational field
─it provides a notion of locally inertial frames
─it determines causality, by defining the speed of light faster than which no signal 

can travel
─it replaces the traditional Euclidean three-dimensional dot product of Newtonian 

mechanics
● Any equation will be invariant under general coordinate transformations if it states 

the equality of two tensors with the same upper and lower indices
● In GR, equations are covariant under general coordinate transformations, an this is 

accomplished through the following algebraic operations with tensors: linear 
combination of tensors, direct product of tensors, contraction of tensors, raising and 
lowering indices of tensors, scalar product of two vectors, inner product of two 
tensors, symmetric and antisymmetric tensors

Metric (fundamental) tensor



● Linear combination: a linear combination of tensors with the same upper and lower 
indices is a tensor with these indices

● Example: let         and          be mixed tensors, and let                                       where 
a and b are scalars; then          is  also a tensor

● Direct product (reminder from the previous lecture): the product of the components 
of two tensors yields a tensor whose upper and lower indices consist of all the upper 
and lower indices of the two original tensors, and whose rank is equal to the sum of 
the two original ranks

● Example: if          and        are tensors, then                             is also a tensor

● Contraction: Setting an upper and lower index equal and summing it over its four 

values yields a new tensor with these two indices absent and with rank reduced by 2 

─Example: if             is a tensor, then                         is also a tensor

● Tensor contraction is a generalization of trace in the sense that the trace is the 

simplest type of tensor contraction, namely a second-rank tensor contraction:

─Example: trace of a mixed second-rank tensor T is a scalar:

Tensor algebra I



● An operation obtained by combining the pervious three operations
● Lowering indices: if we take the direct product of a contravariant or mixed tensor T 

with the metric tensor         and contract the index μ with one of the contravariant 
indices of T, we get a new tensor in which this contravariant index is replaced by a 
covariant index ν

● Example: if            is a tensor then                                is also a tensor
● Raising indices: if we take the direct product of a covariant or mixed tensor T with 

the inverse metric tensor          and contract the index μ with one of the covariant 
indices of T, we get a new tensor in which this covariant index is replaced by a 
contravariant index ν

● Example: if           is a tensor then                               is also a tensor
● Lowering an index and then raising it again gives back the original tensor
● Tensors obtained by raising and lowering indices are called associated tensors and 

are physically equivalent
● Tensor obtained by raising one index on the metric tensor         or by lowering one 

index on the inverse metric tensor          is the Kronecker tensor:
● Raising both indices on         gives the inverse tensor                                and 

lowering both indices on         gives the metric tensor

Raising and lowering indices



● Contraction on a pair of indices that are either both contravariant or both covariant 
is not possible in general, but it is possible in the presence of the metric tensor

● Metric contraction: a combined operation of using the metric tensor to raise or 
lower one of the indices, as needed, followed by the usual operation of contraction

● Scalar (inner or dot) product of two vectors is:

where the final result was obtained by lowering the contravariant index ν 
● Scalar product of two vectors is a scalar and if  it is equal to 0, then the two vectors 

are referred to as orthogonal
● The square of a vector is scalar product of the vector with itself
● Inner product of two tensors (a generalization of the scalar product of vectors) is 

obtained by taking the direct product of two tensors for the special case where one 
index is repeated, and taking the sum over this repeated index (contraction)

● Resulting tensor that has rank equal to the sum of the original ranks reduced by 2 
for one contraction

● The quotient theorem (criterion for tensor character): if the result of taking the 
product (direct or inner) of a given set of elements with a tensor of any specified 
type and arbitrary components is known to be a tensor, then the given elements are 
the components of a tensor

Tensor algebra II



● Tensor is symmetric in any of its indices if it is unchanged under exchange of those 
indices
─Example 1: if                         then          is symmetric in its first two indices
─Example 2: if                                                                             then          is 

symmetric in all three of its indices
● Tensor is antisymmetric in any of its indices if it changes sign when those indices 

are exchanged
─Example: if                            then           is antisymmetric in its first and third 

indices (or simply antisymmetric in μ and ρ)
● Tensor which is (anti-) symmetric in all of its indices, is referred to as completely 

(anti-) symmetric
● Examples:
─Metric and the inverse metric tensors are symmetric
─Levi-Civita tensor           is completely antisymmetric:

Symmetric and antisymmetric tensors



Literature

Exam questions

● Textbook: Weinberg, S., 1972, Gravitation and Cosmology: Principles and 
Applications of the General Theory of Relativity, Wiley-VCH

1. Spacetime as 4-dimensional pseudo-Riemannian manifold and metric tensor
2. Tensor algebra



• Use the fact that under a coordinate transformation                   coordinate 

differential transforms as a contravariant vector due to rules of partial 

differentiation:

to prove that        is indeed a covariant tensor

Exercise 1
• Calculate the components of covariant metric tensor        and contravariant 

(inverse) metric tensor        for:
a) two-dimensional flat Euclidean space (Euclidean plane) in polar coordinates, 

with metric:
b) two-sphere metric:  

Exercise 2

Exercise 3
• Show that the determinant of the metric tensor                        is not a scalar 



Exercise 4
• For the two tensors         and           evaluate their:

a) direct product

b) inner product for ε = γ

c) inner product for ε = γ and α = ν

Exercise 5
• Find the covariant vector       associated to the contravariant vector

as well as its square A2 in Minkowski spacetime where:

Exercise 6
• Write the general forms of a symmetric tensor                    and an asymmetric 

tensor                        as matrices of latin letters a, b, c, …  



Exercise 7
•  Show that a second rank tensor F which is antisymmetric in one coordinate frame 

(Fμν = -Fνμ) is antisymmetric in all frames. Show that the contravariant components 
are also antisymmetric (Fμν = -Fνμ)



a) 

b) 

Solution 1



Solution 2



Solution 3
Under the coordinate transformation                  the transformation of         is

and therefore the transformation of g is

Since                  is not a scalar.



Solution 4

a)  

b)  

c)  



Solution 5



Solution 6



Solution 7
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