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Lecture 06

● Covariant differentiation

─Covariant gradient, curl, and divergence

● Parallel transport

● Minimal-coupling principle
─GR expression for energy-momentum tensor of perfect fluid

● Riemann-Christoffel curvature tensor

● Ricci curvature tensor and scalar curvature

● Exercises



Covariant differentiation
● Ordinary differentiation of a tensor does not generally yield another tensor
● For instance, consider differentiating a contravariant vector Vμ with respect to xλ':

● The first term is what would be expected if           was a tensor, but the second term 
destroys the tensor behavior

● However, it can be shown that:

the sum                                                                                      is a tensor

● Therefore, a covariant derivative Vμ
;λ

 of a contravariant vector Vμ is defined as:

                                           and it is a tensor because:

● Analogously, a covariant derivative of a covariant vector Vμ can be defined as:

                                        and it is also a tensor because:

● Covariant differentiation reduces to ordinary differentiation in the absence of 
gravitation, i.e. when



Covariant derivative of higher rank tensors
● Covariant derivative of a general tensor T of arbitrary rank with respect to xσ is 

calculated by introducing a term with a single +Γ for each upper index, and a term 
with a single -Γ for each lower index:

● Important note: commas (,) in lower indices are used for partial derivatives and 
semicolons (;) are used for covariant ones

● Alternative notation        is often used for covariant derivative:

● Covariant derivative of the metric tensor is zero:
● Covariant differentiation and raising and lowering indices are commutative 

operations:



• Algebra of covariant differentiation:
1. Covariant derivative of a linear combination of tensors is equal to linear 

combination of the covariant derivatives:
2. Covariant derivative of a direct product of tensors obeys the Leibniz rule:

3. Covariant derivative of a contracted tensor is equal to contraction of the covariant 

derivative:

● Covariant derivative of a scalar S is ordinary gradient:

● Covariant curl of a covariant vector Vμ is ordinary curl:
● Covariant divergence of a contravariant vector Vμ , a tensor        , and an

antisymmetric tensor Aμν = -Aνμ:

● Cyclicity of covariant derivative of an antisymmetric covariant tensor Aμν = -Aνμ:

Covariant gradient, curl, and divergence



Parallel transport of vectors
● In GR, vectors are elements of tangent spaces defined at individual points
● In order to do the usual operations with vectors (i.e. to add and subtract them, take 

their dot product, etc.) at different points in a vector space, it is necessary to move a 
vector from one point to another while keeping it constant

● Parallel transport is the concept of moving a vector along  
a path, keeping it constant all the while

● Parallel transport is defined whenever there is a connection
● In contrast to flat spaces, the result of parallel transporting a 

vector from one point to another in a curved space depends 
on the path taken between the points

● It is not possible to move a vector from one tangent space to 
another in an unique way

● Even the transport along a closed path does not preserve, in 
general, the direction of vectors

● Nevertheless, parallel transport can be defined so that it 
preserves the inner product of two vectors, their norm, 
orthogonality, etc

● If defined in that way, parallel transport can be considered 
as the curved-space generalization of the concept of keeping 
the vector constant as it is moved along a path

Example of parallel 
transport on two-sphere



Equation of parallel transport
● In order to define parallel transport of the tensor T along a curve, we first define

covariant derivative of the tensor T along the path xμ(λ) as:

● Parallel transport of the tensor T along the path xμ(λ) is defined by requiring its 
covariant derivative along the path to vanish, i.e. by

● Equation of parallel transport:

● Equation of parallel transport for a vector is:

● Parallel transported tensor is a unique continuation of the tensor to other points along 
the path which solves the parallel transport equation

● gμν is always parallel transported:

● In addition to being a path of the shortest distance between two points, geodesic is 

also a path which parallel transports its own tangent vector



● Minimal-coupling principle is the following simple recipe for generalizing laws of 
physics to the curved spacetime context:
1. Take a law of physics, valid in inertial coordinates in flat spacetime
2. Write it in a coordinate-invariant (tensorial) form
3. Assert that the resulting law remains true in curved spacetime

● If ημν is replaced with gμν and all derivatives with covariant derivatives in an equation 
that holds in SR in the absence of gravitation, then the resulting equation will be 
generally covariant and true in the absence of gravitation, and therefore, according to 
the Principle of General Covariance, it will be true in the presence of gravitational 
field in a region of spacetime sufficiently small when compared with the scale of the 
gravitational field

● GR expressions for the energy-momentum tensor and the law of energy-momentum 
conservation could be obtained by generalizations of the corresponding SR 
expressions according to the minimal-coupling principle:
1. GR expression for the energy-momentum tensor         of a perfect fluid:

2. Energy-momentum tensor         in GR is being conserved since it has vanishing 
covariant divergence (law of energy-momentum conservation in GR):

Minimal-coupling principle



Riemann-Christoffel curvature tensor
● Field equations that are generally covariant and that reduce to the proper form for 

weak fields can be obtained using tensors formed from gμν and its derivatives
● Since no new tensor can be constructed using only gμν and its first derivatives, it is 

necessary to include also the second derivatives of gμν
● The only (unique) tensor that can be constructed from gμν and its first and second 

derivatives is the Riemann (or Riemann-Christoffel) curvature tensor Rλ
μνκ : 

● Rλ
μνκ is is linear in the second derivatives of gμν and is the most common way used to 

express the curvature of Riemannian manifolds
● Rλ

μνκ assigns a tensor to each point of a Riemannian manifold, i.e. it is a tensor field
● Rλ

μνκ could be related to the Gaussian curvature K of a specially constructed 2D 
surface at a given point in a Riemannian space of an arbitrary number of dimensions

● The necessary and sufficient conditions for a metric gμν to be equivalent to the 

Minkowski metric ηαβ (flat space) are that the curvature tensor calculated from gμν 

must everywhere vanish: Rλ
μνκ = 0

● In other words: if the components of the metric are constant in some coordinate 
system, the Riemann tensor will vanish, while if the Riemann tensor vanishes we can 
always construct a coordinate system in which the metric components are constant



Algebraic properties of Riemann tensor
● Algebraic properties of Rλ

μνκ are more clear if its fully covariant form is considered:

● Symmetries and identities of Rλμνκ:
─Symmetry:

─Antisymmetry:

─Cyclicity:
● Due to this, there are                            independent components of the Riemann tensor 

in n dimensions         only 20 independent components of Rλμνκ in 4 dimensions 
● Covariant derivative of the Rλμνκ:

● Bianchi identities are differential identities obtained by cyclically permuting the 

indices ν, κ and η in covariant derivative Rλμνκ;η :



● For the curvature tensor formed from an arbitrary (not necessarily Christoffel) 
connection, there are a number of independent contractions to take

● In the case of the Christoffel connection, the only independent is a contraction 
known as Ricci tensor:

● In terms of affine connection Rμν is: 

● As a consequence of the various symmetries of Riemann tensor, Ricci tensor is 
symmetric:

● Ricci scalar is formed by metric contraction of Ricci tensor:
● Einstein tensor:                                       which has vanishing divergence:

Ricci curvature tensor and scalar curvature

● Ricci scalar is constant for 
a given space

● Spaces are positively 
curved if they have a 
positive Ricci scalar, and 
negatively curved 
(saddle-like) if they have 
a negative Ricci scalar

(implied by Bianchi identities)



Literature

Exam questions

● Weinberg, S., 1972, Gravitation and Cosmology: Principles and 
Applications of the General Theory of Relativity, Wiley-VCH

● Sean M. Carroll, 1997. Lecture Notes on General Relativity, arXiv, 
gr-qc/9712019

1. Covariant differentiation, parallel transport and minimal-coupling 
principle

2. Riemann-Christoffel curvature tensor, Ricci curvature tensor and 
Ricci scalar curvature



Exercise 2
● Prove that covariant derivative of the Kronecker delta symbol δμ

ν is equal to zero

Exercise 3
● Use Leibniz rule to derive the expression for covariant derivative of a second rank 

tensor Tμν, knowing that it could be written as a direct product of two covariant 

vectors Aμ and Bν: Tμν = AμBν.

Exercise 4
• For the two-sphere metric                                                  calculate:

a) all nonzero components of the Riemann tensor
b) all nonzero components of the Ricci tensor
c) value of Ricci scalar

Exercise 1
● Evaluate the following covariant derivatives:

Exercise 5
● Find the Christoffel symbols and Riemann curvature components for the two 

dimensional spacetime:



Solution 1



Solution 2
● Kronecker delta symbol is a second rank tensor, so:



Solution 3



a) Nonzero components of metric tensor and inverse metric tensor:

• Nonzero Christoffel symbols:

• Nonzero components of the Riemann tensor:

a) Nonzero components of the Ricci tensor:

b) Ricci scalar:

Note that Ricci scalar R is proportional to Gaussian curvature K, since Gaussian 

curvature of sphere with radius a is

Solution 4



The only nonvanishing Christoffel symbols are                 and

Since there is only one independent Riemann component in two dimensions we 

conclude that                      and the spacetime is flat

Solution 5
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