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Lecture 07

● Calculus of variations
─ Functional and its variation
─ Extremals 
─ Euler-Lagrange equation

● Principle of least action (Hamilton's principle)
─ Lagrangian and Lagrangian density
─ Action

● Einstein field equations
─ Hilbert action
─ Action in the presence of matter and cosmological constant
─ Varying the action with respect to the metric

● Exercises



● Functional J[y] is a correspondence J: y(x) → R which assigns a definite (real) 
number to each function (or curve) y = y(x) belonging to some class

● Functional is a kind of function, where the independent variable is itself a function

● Example: arc length of a curve y = y(x) in Euclidean plane:

● More general functionals of the following form are of particular importance:

where F(x, y, z) is a continuous function of three variables, and y(x) is a continuously 
differentiable function defined on the interval [a, b]

● By choosing different functions F(x, y, z) we obtain different functionals: e.g. if
                                       then J[y] is the arc length of the curve y = y(x)

● Increment ΔJ of the functional J[y] corresponding to the increment h = h(x) of the 
"independent variable" y = y(x) is:

● Taylor expansion

Calculus of variations



● Variation δJ of functional J[y] is the first term in the previous expansion, i.e. the 
linear part of the increment ΔJ:

● Calculus of variations is used for finding the maxima and minima of functionals
● Extremal is the function y = y(x) for which functional J[y] has an extremum
● A necessary condition for J[y] to have an extremum for y = y(x) is: 

                                                             (Euler-Lagrange differential equation)

● Extremals are obtained by solving the Euler-Lagrange differential equation
● Solution of this second-order differential equation will depend on two arbitrary 

constants, which are determined from the boundary conditions: y(a) = A and y(b) = B
● Special cases where Euler-Lagrange equation can be reduced to a first -order 

differential equation, or where its solution can be obtained by evaluating integrals:

1. F does not depend on y:

2. F does not depend on x:

3. F does not depend on y':                                             (is not a differential equation)

Euler-Lagrange differential equation



● Variational (or functional) derivative relates a change in a functional to a change in a 
function on which the functional depends

● In the case of functionals of the type:                                                   variational 

derivative is the left-hand side of Euler-Lagrange equation:
● Functional J[y] has an extremum if its variational derivative vanish at every point, like 

in the case of a function which has an extremum if all of its partial derivatives vanish
● The analogs of all the familiar rules obeyed by ordinary derivatives (e.g. the formulas 

for differentiating sums and products of functions, composite functions, etc.) are also 
valid for variational derivatives:

─Linearity:                                                            where λ and μ are constants

─Product rule:

─Chain rules:

Variational derivative

● Functional derivative with 
respect to the metric is used 
for variation of the Hilbert 
action in order to obtain the 
Einstein field equations



● Principle of least (stationary) action or Hamilton's principle:
The motion of a system of n particles during the time interval  
[t0, t1] is described by those functions xi(t), yi(t), zi(t), i = 1,...,n, 
for which the action S is a minimum

● δS = 0 and the Euler-Lagrange equations must be satisfied for     
i = 1,..., n:

Lagrangian and action
● Application of calculus of variations to classical mechanics 
● Kinetic energy T of a system of n particles with masses mi and coordinates xi, yi, zi   

(i = 1,…, n), where no constraints whatsoever are imposed on the system, is:

● Potential energy U of the system is a function U = U(t, x1, y1, z1 ,…, xn, yn, zn) such 
that the force acting on the 
ith particle has components:

● Lagrangian L = T - U of the system of particles is a function of the time t, positions 
(xi, yi, zi) and velocities                  of the n particles in the system

● Action is the functional given by the integral of Lagrangian:



● In classical mechanics, the parameters that define the configuration of a system are 
called generalized coordinates q(t), and the space defined by these coordinates is 
called the configuration space of the physical system

● Action in generalized coordinates:

● Principle of least action: the path taken by the system between times t1 and t2 and 
configurations q1 and q2 is the one for which the action is stationary (δS = 0)

● Euler-Lagrange equation:
● Action: 
─describes how a physical system has changed over time
─is a functional which takes the trajectory (or path) of the system as its argument 

and has a real number as its result, taking different values for different paths
─has dimensions of energy · time: [S] = J · s

● Principle of least (stationary) action:
─is a variational principle that, when applied to the action of a mechanical system, 

yields the equations of motion for that system
─is a most fundamental principle in classical mechanics, electromagnetism, general 

relativity, quantum mechanics, particle physics, ...

Principle of least (stationary) action



● In the field theory, Lagrangian as a function of generalized coordinates q(t) is 
replaced by a Lagrangian density L, a function of the fields φi in the system, their 
derivatives and the spacetime coordinates themselves:

● Lagrangian is the spatial volume integral of the Lagrangian density:
● Often, a "Lagrangian density" is simply referred to as a "Lagrangian"

● Action S is then given by:
● The equations of motion are obtained using action principle, written as:

● Field equations of GR were first derived by Hilbert using the action principle, 
taking into account that in GR:
─metric        is the field variable
─invariant volume element is the scalar                   where 

● Hilbert figured that the simplest possible choice for Lagrangian density is the one 

which is proportional to Ricci scalar R:                    where                    is the 

Einstein gravitational constant

● Hilbert action is then given by:

Hilbert action



● Hilbert action SH represents the gravitational part of the full action S, and its variation 
with respect to the metric leads to the vacuum field equations of GR

● Einstein equations in the presence of matter are derived using the full Lagrangian 
density      which is obtained by adding a term        describing matter fields (non-
gravitational part of    ) to the Hilbert term:

● The full action is then:

● In that case the energy-momentum tensor is defined as:

● If cosmological constant Λ is included in the Lagrangian:

and then the full action is:

● Variation of the above action with respect to the metric leads to the Einstein field 
equations with cosmological constant Λ

Action in the presence of matter and 
cosmological constant



● According to the principle of least action, the variation of the action with respect to the 

inverse metric is zero:

● Variation of the Ricci scalar:

● Variation of the metric determinant:

● Einstein field equations:

● In the case with cosmological constant Λ:

● EFE relate the geometry of spacetime to the distribution of matter within it
● Wheeler: "Matter tells spacetime how to curve. Spacetime tells matter how to move."

Einstein field equations (EFE)
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1. Euler-Lagrange equation, Lagrangian and principle of least action

2. Hilbert action, action in the presence of matter and cosmological 
constant, Einstein field equations



Exercise 1

Exercise 2
• Find the extremal of the following functional:

• Among all the curves y = f(x) in the Euclidean plane, find the one which has the 

shortest arc length                                                    between two given points (x1, y1) 

and (x2 , y2).

Exercise 3
• For the 2-dimensional metric                                       find all timelike geodesic 

curves using the principle of least action.



● In order to find the extremal f(x) that minimizes the functional A[y] we have to 

solve the Euler-Lagrange equation:                                  where:

● Since f does not appear explicitly in L, the first term in the Euler–Lagrange 

equation vanishes and thus:

● Constants A and B are obtained from the boundary conditions:

● The extremal f(x) that minimizes the functional A[y] is a straight line.

Solution 1



                             does not contain y, so Euler-Lagrange equation has the form:

● From the boundary conditions, we find that:                                 and the final

solution is:

Solution 2



● Let a geodesic be x(t). Then the action is:                                                  and

● In this case Euler-Lagrange equation is:

● Geodesics are hyperbolas asymptotic to the light cones:

Solution 3
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