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Lecture 07

e Calculus of variations
— Functional and its variation
— Extremals
— Euler-Lagrange equation

* Principle of least action (Hamilton's principle)
— Lagrangian and Lagrangian density
— Action

* Einstein field equations
— Hilbert action
— Action 1n the presence of matter and cosmological constant
— Varying the action with respect to the metric

e Exercises



Calculus of variations

* Functional J[y] is a correspondence J: y(x) — R which assigns a definite (real)
number to each function (or curve) y = y(x) belonging to some class

* Functional 1s a kind of function, where the independent variable is itself a function

b
» Example: arc length of a curve y = y(x) in Euclidean plane: J |y| = / V1+y?de

* More general functionals of the following form are of particular importance:
b

Tl = [ Floy@).y/ @] dr. y(@)= A, y) =B
where F(x, y,z)1s a continuous function of three variables, and y(x) 1s a continuously
differentiable function defined on the interval [a, D]
* By choosing different functions F(x, y, z) we obtain different functionals: e.g. if

F(z,y,2z) = +/1+ 22, then J[y] 1s the arc length of the curve y = y(x)

* Increment AJ of the functional J[y] corresponding to the increment 4 = A(x) of the
"Independent variable" y = y(x) 1s:

AT =Jly+h—J] =/ F (2,5 + hyy' + 1) — F (,,5)] de

b
* Taylor expansion = AJ = / Fy (z,y, 9 ) h+ Fy (z,y,y") h']dz + ...

a



Euler-Lagrange differential equation

* Variation oJ of functional J[y] 1s the first term in the previous expansion, i.e. the

linear part of the increment AJ:
oF oF

b
5J:/a [Fy, (z,y,9' ) h+ Fy (z,y,y )h]da:—/a (a—yh+ayh)da:

* Calculus of variations is used for finding the maxima and minima of functionals
* Extremal 1s the function y = y(x) for which functional J[y] has an extremum
* A necessary condition for J[y] to have an extremum for y = y(x) is:

o0 =0 = 8F—d6F—O Euler-L differential ti
= 5y dzdy (Euler-Lagrange differential equation)

* Extremals are obtained by solving the Euler-Lagrange differential equation

* Solution of this second-order differential equation will depend on two arbitrary
constants, which are determined from the boundary conditions: y(a) = 4 and y(b) = B

* Special cases where Euler-Lagrange equation can be reduced to a first-order
differential equation, or where its solution can be obtained by evaluating integrals:

OF
I. Fdoesnotdependony: F = F(z,y) = pwie =C = ¢y = f(z,0)
F
2. Fdoesnotdepend onx: F' = F(y,y') = The first integral is: F —y g =C
Y’
3. Fdoesnotdependon )" ' = F(x,y) = 8_F — ( (is not a differential equation)

y



Variational derivative

* Variational (or functional) derivative relates a change in a functional to a change in a

function on which the functional depends X

* In the case of functionals of the type: J|y| = / Flz, f(x), f'(z)] dx, variational

derivative is the left-hand side of Euler-Lagrange equation: 0J _oF doF
5f  Of dxdf
* Functional J[y] has an extremum if its variational derivative vanish at every point, like

in the case of a function which has an extremum if all of its partial derivatives vanish

* The analogs of all the familiar rules obeyed by ordinary derivatives (e.g. the formulas

for differentiating sums and products of functions, composite functions, etc.) are also
valid for variational derivatives:

— Linearity: SN + pG)lp = A(SF[/) ] + M(SG[/) ] , where /4 and u are constants
op(x) op(x)  op(x)
_ . O0(FG)lp] _ 0Fp] 0G|p]
Product rule: o) opla) Glp| + Fp] 5p(2)  Functional derivative with
respect to the metric is used
— Chain rules: 2FLGlAl] / 5. 07 1G] 9Glpl(z)  for variation of the Hilbert
5p(y) 0G(%) g—gl,) 9PV action in order to obtain the
SFg(p)] ) 5Fg(p)] dg(p) Einstein field equations

6p(y) oglp(y)] dp(y)



Lagrangian and action

* Application of calculus of variations to classical mechanics
* Kinetic energy T of a system of n particles with masses m; and coordinates x;, y;, z;
(i =1,..., n), where no constraints whatsoever are imposed on the system, is:
BN .2 2 12
i=1
* Potential energy U of the system 1s a function U = U(¢, x1, y1, 1 ,..., Xu, Yn, Zn) SUCh
that the force acting on the - _ U v _ v 7 _ou
ith particle has components: ox; oy;” 0z;

* Lagrangian L = T - U of the system of particles 1s a function of the time ¢, positions
(x:, vi, z:) and velocities (Z;, ¥;, 2;) of the n particles in the system

11
* Action 1s the functional given by the integral of Lagrangian: S = / Ldt

o
* Principle of least (stationary) action or Hamilton's principle: I, d oL,

The motion of a system of n particles during the time interval 57 di OF 0,

[%0, t:1] 1s described by those functions x(?), yi(?), zit), i = 1,...,n, 9 LZ q 9 LZ

for which the action S 1s a minimum — — =0,
Jy;  dt Oy,

* 05 = 0 and the Euler-Lagrange equations must be satisfied for gy, d oL

i=1,..., n: Oz dt 0z, 0




Principle of least (stationary) action

* In classical mechanics, the parameters that define the configuration of a system are
called generalized coordinates ¢(7), and the space defined by these coordinates is

called the configuration space of the physical system
t2

 Action in generalized coordinates: S = / L(q,q,t)dt
t1
* Principle of least action: the path taken by the system between times #, and #, and

configurations ¢, and ¢- 1s the one for which the action 1s stationary (oS = 0)
* Euler-Lagrange equation: oL _ d ( oL ) -
grange eq 0
* Action: 0q  dt \9(q)
—describes how a physical system has changed over time
—1is a functional which takes the trajectory (or path) of the system as its argument
and has a real number as its result, taking different values for different paths
—has dimensions of energy - time: [S]=1] - s
* Principle of least (stationary) action:
—1s a variational principle that, when applied to the action of a mechanical system,
yields the equations of motion for that system
—1s a most fundamental principle in classical mechanics, electromagnetism, general
relativity, quantum mechanics, particle physics, ...




Hilbert action

* In the field theory, Lagrangian as a function of generalized coordinates ¢(z) is
replaced by a Lagrangian density £, a function of the fields ¢; in the system, their
derivatives and the spacetime coordinates themselves: £ = L (¢;, 0p;/0x,,x,)

* Lagrangian 1s the spatial volume integral of the Lagrangian density: [ = / Ld3z
* Often, a "Lagrangian density" 1s simply referred to as a "Lagrangian”

* Action S'is then given by: S = /dtL = /d%ﬁ(%,a%‘/axmwu)

: : : : , 05
* The equations of motion are obtained using action principle, written as:

0p;i
* Field equations of GR were first derived by Hilbert using the action principle,
taking into account that in GR:
—metric Juv1s the field variable
—invariant volume element is the scalar v/—g d*z, where g = det g,

0

* Hilbert figured that the simplest possible choice for Lagrangian density is the one

8t
which is proportional to Ricci scalar R: L4 = 25, where k = is the
K

4
c
Einstein gravitational constant

1
* Hilbert action is then given by: Sy = /\/—g d*zLy = 7n /R\/—g d*z



Action in the presence of matter and
cosmological constant

* Hilbert action Sy represents the gravitational part of the full action S, and its variation
with respect to the metric leads to the vacuum field equations of GR

* Einstein equations in the presence of matter are derived using the full Lagrangian
density £, which is obtained by adding a term £ describing matter fields (non-
gravitational part of £) to the Hilbert term: £ = Ly + Ly

* The full action 1s then: S:/ [%RJFEM] V—gdiz,
K
_ =2 0 (Lmv—9)
Vg dg

* If cosmological constant A is included in the Lagrangian: £ = QL (R —2A) + Ly,
K

* In that case the energy-momentum tensor 18 defined as: 7T},

2, ¢
* Variation of the above action with respect to the metric leads to the Einstein field
equations with cosmological constant A

and then the full action is: S = / [ ! R —2A) + EM] V—gdiz



Einstein field equations (EFE)

* According to the principle of least action, the variation of the action with respect to the
inverse metric is zero: §S = § {/ IQLR + £M] vV —g d4:z:} =0 <
K
[ 1 6 (v/—9gR 0 (v/—gL

2k OgMv dOgHY
1 (0R R 0y—g 1 §(/=gLwm) )
69"/ —gd'z =
/_2/<:(9“” \/_59“”)+\/—_9 ogH” J gEES S
L (6R R §y=g\, L 0(/=gLm) _, _
N 59“” V=g o

OR R 6/— —2k 0(\/—9L ) s OR R 6/— kT, (1)
= 59“” T Vg g = 59“” I

OR

5g/~LV - R/“/ (2) 1
* Variation of the metric determinant: §y/—¢g = —5\/—9 (9u0g"”)  (3)

1
* Einstein field equations: (1) A (2) A (3) = |Ru — §gWR = K51y

e Variation of the Ricci scalar:

: : 1
* In the case with cosmological constant A: | R, — 5 9B+ ANgu = kT,

* EFE relate the geometry of spacetime to the distribution of matter within it
* Wheeler: "Matter tells spacetime how to curve. Spacetime tells matter how to move."




Exam questions

1. Euler-Lagrange equation, Lagrangian and principle of least action

2. Hilbert action, action 1n the presence of matter and cosmological
constant, Einstein field equations
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Exercise 1

* Among all the curves y = f(x) in the Euclidean plane find the one which has the

L2
shortest arc length A [y / \/ 1+ ? dz between two given points (xi, 1)
and (XQ R yz).

Exercise 2

* Find the extremal of the following functional:

_/2 1+yl2dx
1 i

Exercise 3

* For the 2-dimensional metric ds* = (dz* — dt*) /¢, find all timelike geodesic
curves using the principle of least action.



Solution 1

* In order to find the extremal f(x) that minimizes the functional A[y] we have to

: oL d OL 2

solve the Fuler-Lagrange equation: — — — —— — (. where: L = 1/1 4+ [/
grange eq of " dwop =~ \/ (@)
* Since f does not appear explicitly in L, the first term in the Euler—Lagrange

/
equation vanishes and thus: i@_L -0 = d f(z) -0 =
dx O f' dr \/1+ [f'(z)]?
f'(x) : ¢
=c = x) = =A = x)=Ax+ B
VT @R T ==a 1

* Constants A and B are obtained from the boundary conditions:
A — Y2 — Y1 ANB — T2Y1 — T1Y2
To — X1 L2 — I1
* The extremal f(x) that minimizes the functional 4[y] is a straight line.




Solution 2

V1+y”?
L = ; Y does not contain y, so Euler-Lagrange equation has the form:
d 0L oL Yy’
—— =0 = —=0C = =C <
dx 0y’ oy’ /1 + o2
Cx V1 —C2x2
12 2 .2 2.2 /
1-C%z%) =C"z2" & = = = +C
Y™ ( ) V= Ao y C :
1
(y—C1)* +a° = o2
1
* From the boundary conditions, we find that: C = \/_3’ C1 = 2,and the final

solution is: (y — 2)° + 22 =5



Solution 3

* Let a geodesic be x(¢). Then the action is: S = / ds = / vVi?—1 % and

55:5]@@-1%:0

.2 .
* In this case Euler-Lagrange equation is: oL _ i(?_L _Qand L = X7* ! =
Oxr dt Oz
a ( v ) 0 & v = T == ct —
p— = C rT =
dt \tv/i2 —1 tva? —1 Vert? —1
1 t? (x — x0)?
—po=tVE2—c2?2 = P —(r—x)) =5 = — =1
T =V T =G T Wer @

* Geodesics are hyperbolas asymptotic to the light cones:
N
)

. F)
N QPb’
/’
N 4 /9
A » /
\ " /
. = P
e /
SNy
\
t=0

T
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