MASS 2023 Course: Gravitation and Cosmology

Predrag Jovanović
Astronomical Observatory Belgrade

Lecture 07

- Calculus of variations
- Functional and its variation
- Extremals
- Euler-Lagrange equation
- Principle of least action (Hamilton's principle)
- Lagrangian and Lagrangian density
- Action
- Einstein field equations
- Hilbert action
- Action in the presence of matter and cosmological constant
- Varying the action with respect to the metric
- Exercises

Calculus of variations

- Functional $J y]$ is a correspondence $J: y(x) \rightarrow R$ which assigns a definite (real) number to each function (or curve) $y=y(x)$ belonging to some class
- Functional is a kind of function, where the independent variable is itself a function - Example: arc length of a curve $y=y(x)$ in Euclidean plane: $J[y]=\int_{a}^{b} \sqrt{1+y^{\prime 2}} d x$
- More general functionals of the following form are of particular importance:

$$
J[y]=\int_{a}^{b} F\left[x, y(x), y^{\prime}(x)\right] d x, \quad y(a)=A, \quad y(b)=B,
$$

where $F(x, y, z)$ is a continuous function of three variables, and $y(x)$ is a continuously differentiable function defined on the interval $[a, b]$

- By choosing different functions $F(x, y, z)$ we obtain different functionals: e.g. if $F(x, y, z)=\sqrt{1+z^{2}}$, then $J[y]$ is the arc length of the curve $y=y(x)$
- Increment ΔJ of the functional $J[y]$ corresponding to the increment $h=h(x)$ of the "independent variable" $y=y(x)$ is:

$$
\Delta J=J[y+h]-J[y]=\int_{a}^{b}\left[F\left(x, y+h, y^{\prime}+h^{\prime}\right)-F\left(x, y, y^{\prime}\right)\right] d x
$$

- Taylor expansion $\Rightarrow \Delta J=\int_{a}^{b}\left[F_{y}\left(x, y, y^{\prime}\right) h+F_{y^{\prime}}\left(x, y, y^{\prime}\right) h^{\prime}\right] d x+\ldots$

Euler-Lagrange differential equation

- Variation δJ of functional $J[y]$ is the first term in the previous expansion, i.e. the linear part of the increment ΔJ :

$$
\delta J=\int_{a}^{b}\left[F_{y}\left(x, y, y^{\prime}\right) h+F_{y^{\prime}}\left(x, y, y^{\prime}\right) h^{\prime}\right] d x=\int_{a}^{b}\left(\frac{\partial F}{\partial y} h+\frac{\partial F}{\partial y^{\prime}} h^{\prime}\right) d x
$$

- Calculus of variations is used for finding the maxima and minima of functionals
- Extremal is the function $y=y(x)$ for which functional $J y]$ has an extremum - A necessary condition for $J[y]$ to have an extremum for $y=y(x)$ is:
$\delta J=0 \quad \Rightarrow \quad \frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}=0 \quad$ (Euler-Lagrange differential equation)
- Extremals are obtained by solving the Euler-Lagrange differential equation
- Solution of this second-order differential equation will depend on two arbitrary constants, which are determined from the boundary conditions: $y(a)=A$ and $y(b)=B$
- Special cases where Euler-Lagrange equation can be reduced to a first-order differential equation, or where its solution can be obtained by evaluating integrals:

1. F does not depend on $y: F=F\left(x, y^{\prime}\right) \Rightarrow \frac{\partial F}{\partial y^{\prime}}=C \Rightarrow y^{\prime}=f(x, C)$
2. F does not depend on $x: F=F\left(y, y^{\prime}\right) \Rightarrow$ The first integral is: $F-y^{\prime} \frac{\partial F}{\partial y^{\prime}}=C$
3. F does not depend on $y^{\prime}: F=F(x, y) \Rightarrow \frac{\partial F}{\partial y}=0$ (is not a differential equation)

Variational derivative

- Variational (or functional) derivative relates a change in a functional to a change in a function on which the functional depends
- In the case of functionals of the type: $J[y]=\int_{a}^{b} F\left[x, f(x), f^{\prime}(x)\right] d x$, variational derivative is the left-hand side of Euler-Lagrange equation: $\frac{\delta J}{\delta f}=\frac{\partial F}{\partial f}-\frac{d}{d x} \frac{\partial F}{\partial f^{\prime}}$
- Functional $J y]$ has an extremum if its variational derivative vanish at every point, like in the case of a function which has an extremum if all of its partial derivatives vanish
- The analogs of all the familiar rules obeyed by ordinary derivatives (e.g. the formulas for differentiating sums and products of functions, composite functions, etc.) are also valid for variational derivatives:
-Linearity: $\frac{\delta(\lambda F+\mu G)[\rho]}{\delta \rho(x)}=\lambda \frac{\delta F[\rho]}{\delta \rho(x)}+\mu \frac{\delta G[\rho]}{\delta \rho(x)}$, where λ and μ are constants
-Product rule: $\frac{\delta(F G)[\rho]}{\delta \rho(x)}=\frac{\delta F[\rho]}{\delta \rho(x)} G[\rho]+F[\rho] \frac{\delta G[\rho]}{\delta \rho(x)}$
- Chain rules: $\frac{\delta F[G[\rho]]}{\delta \rho(y)}=\int d x \frac{\delta F[G]}{\delta G(x)}_{G=G[\rho]} \cdot \frac{\delta G[\rho](x)}{\delta \rho(y)}$

$$
\frac{\delta F[g(\rho)]}{\delta \rho(y)}=\frac{\delta F[g(\rho)]}{\delta g[\rho(y)]} \frac{d g(\rho)}{d \rho(y)}
$$

- Functional derivative with respect to the metric is used for variation of the Hilbert action in order to obtain the Einstein field equations

Lagrangian and action

- Application of calculus of variations to classical mechanics
- Kinetic energy T of a system of n particles with masses m_{i} and coordinates x_{i}, y_{i}, z_{i} $(i=1, \ldots, n)$, where no constraints whatsoever are imposed on the system, is:

$$
T=\frac{1}{2} \sum_{i=1}^{n} m_{i}\left(\dot{x}_{i}^{2}+\dot{y}_{i}^{2}+\dot{z}_{i}^{2}\right)
$$

- Potential energy U of the system is a function $U=U\left(t, x_{1}, y_{1}, z_{1}, \ldots, x_{n}, y_{n}, z_{n}\right)$ such that the force acting on the i th particle has components:

$$
X_{i}=-\frac{\partial U}{\partial x_{i}}, Y_{i}=-\frac{\partial U}{\partial y_{i}}, Z_{i}=-\frac{\partial U}{\partial z_{i}}
$$

- Lagrangian $L=T$ - U of the system of particles is a function of the time t, positions $\left(x_{i}, y_{i}, z_{i}\right)$ and velocities $\left(\dot{x}_{i}, \dot{y}_{i}, \dot{z}_{i}\right)$ of the n particles in the system
- Action is the functional given by the integral of Lagrangian: $S=\int_{t_{0}}^{t_{1}} L d t$
- Principle of least (stationary) action or Hamilton's principle: The motion of a system of n particles during the time interval [$\left.t_{0}, t_{1}\right]$ is described by those functions $x_{i}(t), y_{i}(t), z_{i}(t), i=1, \ldots, n$, for which the action S is a minimum
- $\delta S=0$ and the Euler-Lagrange equations must be satisfied for $i=1, \ldots, \mathrm{n}:$

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}_{i}}=0 \\
& \frac{\partial L}{\partial y_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{y}_{i}}=0 \\
& \frac{\partial L}{\partial z_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{z}_{i}}=0
\end{aligned}
$$

Principle of least (stationary) action

- In classical mechanics, the parameters that define the configuration of a system are called generalized coordinates $q(t)$, and the space defined by these coordinates is called the configuration space of the physical system
- Action in generalized coordinates: $S=\int_{t_{1}}^{t_{2}} L(q, \dot{q}, t) d t$
- Principle of least action: the path taken by the system between times t_{1} and t_{2} and configurations q_{1} and q_{2} is the one for which the action is stationary ($\delta S=0$)
- Euler-Lagrange equation: $\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial(\dot{q})}\right)=0$
- describes how a physical system has changed over time
- is a functional which takes the trajectory (or path) of the system as its argument and has a real number as its result, taking different values for different paths
-has dimensions of energy • time: $[\mathrm{S}]=\mathrm{J} \cdot \mathrm{s}$
- Principle of least (stationary) action:
-is a variational principle that, when applied to the action of a mechanical system, yields the equations of motion for that system
- is a most fundamental principle in classical mechanics, electromagnetism, general relativity, quantum mechanics, particle physics, ...

Hilbert action

- In the field theory, Lagrangian as a function of generalized coordinates $q(t)$ is replaced by a Lagrangian density \mathcal{L}, a function of the fields φ_{i} in the system, their derivatives and the spacetime coordinates themselves: $\mathcal{L}=\mathcal{L}\left(\varphi_{i}, \partial \varphi_{i} / \partial x_{\mu}, x_{\mu}\right)$
- Lagrangian is the spatial volume integral of the Lagrangian density: $L=\int \mathcal{L} d^{3} x$
- Often, a "Lagrangian density" is simply referred to as a "Lagrangian"
- Action S is then given by: $S=\int d t L=\int d^{4} x \mathcal{L}\left(\varphi_{i}, \partial \varphi_{i} / \partial x_{\mu}, x_{\mu}\right)$
- The equations of motion are obtained using action principle, written as: $\frac{\delta S}{\delta \varphi_{i}}=0$
- Field equations of GR were first derived by Hilbert using the action principle, taking into account that in GR:
- metric $g_{\mu \nu}$ is the field variable
-invariant volume element is the scalar $\sqrt{-g} d^{4} x$, where $g=\operatorname{det} g_{\mu \nu}$
- Hilbert figured that the simplest possible choice for Lagrangian density is the one which is proportional to Ricci scalar $R: \mathcal{L}_{H}=\frac{R}{2 \kappa}$, where $\kappa=\frac{8 \pi G}{c^{4}}$ is the Einstein gravitational constant
- Hilbert action is then given by: $S_{H}=\int \sqrt{-g} d^{4} x \mathcal{L}_{H}=\frac{1}{2 \kappa} \int R \sqrt{-g} d^{4} x$

Action in the presence of matter and cosmological constant

- Hilbert action S_{H} represents the gravitational part of the full action S, and its variation with respect to the metric leads to the vacuum field equations of GR
- Einstein equations in the presence of matter are derived using the full Lagrangian density \mathcal{L}, which is obtained by adding a term \mathcal{L}_{M} describing matter fields (nongravitational part of \mathcal{L}) to the Hilbert term: $\mathcal{L}=\mathcal{L}_{H}+\mathcal{L}_{M}$
- The full action is then: $S=\int\left[\frac{1}{2 \kappa} R+\mathcal{L}_{\mathrm{M}}\right] \sqrt{-g} d^{4} x$,
- In that case the energy-momentum tensor is defined as: $T_{\mu \nu} \equiv \frac{-2}{\sqrt{-g}} \frac{\delta\left(\mathcal{L}_{M} \sqrt{-g}\right)}{\delta g^{\mu \nu}}$
- If cosmological constant Λ is included in the Lagrangian: $\mathcal{L}=\frac{1}{2 \kappa}(R-2 \Lambda)+\mathcal{L}_{M}$, and then the full action is: $S=\int\left[\frac{1}{2 \kappa}(R-2 \Lambda)+\mathcal{L}_{M}\right] \sqrt{-g} d^{4} x$
- Variation of the above action with respect to the metric leads to the Einstein field equations with cosmological constant Λ

Einstein field equations (EFE)

- According to the principle of least action, the variation of the action with respect to the inverse metric is zero: $\delta S=\delta\left\{\int\left[\frac{1}{2 \kappa} R+\mathcal{L}_{\mathrm{M}}\right] \sqrt{-g} d^{4} x\right\}=0 \quad \Leftrightarrow$

$$
\begin{align*}
& \int\left[\frac{1}{2 \kappa} \frac{\delta(\sqrt{-g} R)}{\delta g^{\mu \nu}}+\frac{\delta\left(\sqrt{-g} \mathcal{L}_{M}\right)}{\delta g^{\mu \nu}}\right] \delta g^{\mu \nu} d^{4} x=0 \Leftrightarrow \\
& \int\left[\frac{1}{2 \kappa}\left(\frac{\delta R}{\delta g^{\mu \nu}}+\frac{R}{\sqrt{-g}} \frac{\delta \sqrt{-g}}{\delta g^{\mu \nu}}\right)+\frac{1}{\sqrt{-g}} \frac{\delta\left(\sqrt{-g} \mathcal{L}_{M}\right)}{\delta g^{\mu \nu}}\right] \delta g^{\mu \nu} \sqrt{-g} d^{4} x=0 \Rightarrow \\
& \frac{1}{2 \kappa}\left(\frac{\delta R}{\delta g^{\mu \nu}}+\frac{R}{\sqrt{-g}} \frac{\delta \sqrt{-g}}{\delta g^{\mu \nu}}\right)+\frac{1}{\sqrt{-g}} \frac{\delta\left(\sqrt{-g} \mathcal{L}_{M}\right)}{\delta g^{\mu \nu}}=0 \Rightarrow \\
& \frac{\delta R}{\delta g^{\mu \nu}}+\frac{R}{\sqrt{-g}} \frac{\delta \sqrt{-g}}{\delta g^{\mu \nu}}=\frac{-2 \kappa}{\sqrt{-g}} \frac{\delta\left(\sqrt{-g} \mathcal{L}_{M}\right)}{\delta g^{\mu \nu}} \Leftrightarrow \frac{\delta R}{\delta g^{\mu \nu}}+\frac{R}{\sqrt{-g}} \frac{\delta \sqrt{-g}}{\delta g^{\mu \nu}}=\kappa T_{\mu \nu} \tag{1}
\end{align*}
$$

- Variation of the Ricci scalar: $\frac{\delta R}{\delta g^{\mu \nu}}=R_{\mu \nu} \quad$ (2)
- Variation of the metric determinant: $\delta \sqrt{-g}=-\frac{1}{2} \sqrt{-g}\left(g_{\mu \nu} \delta g^{\mu \nu}\right)$
- Einstein field equations: $(1) \wedge(2) \wedge(3) \quad \Rightarrow \quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\kappa T_{\mu \nu}$
- In the case with cosmological constant Λ :

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu}
$$

- EFE relate the geometry of spacetime to the distribution of matter within it
- Wheeler: "Matter tells spacetime how to curve. Spacetime tells matter how to move."

Exam questions

1. Euler-Lagrange equation, Lagrangian and principle of least action
2. Hilbert action, action in the presence of matter and cosmological constant, Einstein field equations

Literature

- I. M. Gelfand and S. V. Fomin, 1963, Calculus of Variations, Revised English Edition, Prentice-Hall, Inc
- Weinberg, S., 1972, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley-VCH
- Sean M. Carroll, 1997. Lecture Notes on General Relativity, arXiv, gr-qc/9712019

Exercise 1

- Among all the curves $y=f(x)$ in the Euclidean plane, find the one which has the shortest arc length $A[y]=\int_{x_{1}}^{x_{2}} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$ between two given points $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}).

Exercise 2

- Find the extremal of the following functional:

$$
J[y]=\int_{1}^{2} \frac{\sqrt{1+y^{\prime 2}}}{x} d x, \quad y(1)=0, y(2)=1
$$

Exercise 3

- For the 2-dimensional metric $d s^{2}=\left(d x^{2}-d t^{2}\right) / t^{2}$, find all timelike geodesic curves using the principle of least action.

Solution 1

- In order to find the extremal $f(x)$ that minimizes the functional $A[y]$ we have to solve the Euler-Lagrange equation: $\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0$, where: $L=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$
- Since f does not appear explicitly in L, the first term in the Euler-Lagrange equation vanishes and thus: $\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0 \quad \Rightarrow \quad \frac{d}{d x} \frac{f^{\prime}(x)}{\sqrt{1+\left[f^{\prime}(x)\right]^{2}}}=0 \quad \Rightarrow$

$$
\frac{f^{\prime}(x)}{\sqrt{1+\left[f^{\prime}(x)\right]^{2}}}=c \quad \Rightarrow \quad f^{\prime}(x)=\frac{c}{\sqrt{1-c^{2}}}=A \quad \Rightarrow \quad f(x)=A x+B
$$

- Constants A and B are obtained from the boundary conditions:
$A=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \wedge B=\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}-x_{1}}$
- The extremal $f(x)$ that minimizes the functional $A[y]$ is a straight line.

Solution 2

$L=\frac{\sqrt{1+y^{\prime 2}}}{x}$ does not contain y, so Euler-Lagrange equation has the form: $\frac{d}{d x} \frac{\partial L}{\partial y^{\prime}}=0 \quad \Rightarrow \quad \frac{\partial L}{\partial y^{\prime}}=C \quad \Rightarrow \quad \frac{y^{\prime}}{x \sqrt{1+y^{\prime 2}}}=C \quad \Leftrightarrow$
$y^{\prime 2}\left(1-C^{2} x^{2}\right)=C^{2} x^{2} \quad \Leftrightarrow \quad y^{\prime}=\frac{C x}{\sqrt{1-C^{2} x^{2}}} \quad \Rightarrow \quad y=\frac{\sqrt{1-C^{2} x^{2}}}{C}+C_{1}$
$\left(y-C_{1}\right)^{2}+x^{2}=\frac{1}{C^{2}}$

- From the boundary conditions, we find that: $C=\frac{1}{\sqrt{5}}, C_{1}=2$,and the final solution is: $(y-2)^{2}+x^{2}=5$

Solution 3

- Let a geodesic be $x(t)$. Then the action is: $S=\int d s=\int \sqrt{\dot{x}^{2}-1} \frac{d t}{t}$ and $\delta S=\delta \int \sqrt{\dot{x}^{2}-1} \frac{d t}{t}=0$
- In this case Euler-Lagrange equation is: $\frac{\partial L}{\partial x}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}=0$ and $L=\frac{\sqrt{\dot{x}^{2}-1}}{t} \Rightarrow$

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\dot{x}}{t \sqrt{\dot{x}^{2}-1}}\right)=0 \Leftrightarrow \frac{\dot{x}}{t \sqrt{\dot{x}^{2}-1}}=c \Rightarrow \dot{x}= \pm \frac{c t}{\sqrt{c^{2} t^{2}-1}} \Rightarrow \\
& x-x_{0}= \pm \sqrt{t^{2}-c^{-2}} \Rightarrow t^{2}-\left(x-x_{0}\right)^{2}=\frac{1}{c^{2}} \Rightarrow \frac{t^{2}}{(1 / c)^{2}}-\frac{\left(x-x_{0}\right)^{2}}{(1 / c)^{2}}=1
\end{aligned}
$$

- Geodesics are hyperbolas asymptotic to the light cones:

