MASS 2023 Course: Gravitation and Cosmology

Predrag Jovanović
Astronomical Observatory Belgrade

Lecture 10

- Distance measures in cosmology:
- Proper distance
* Hubble-Lemaître law
- Comoving distance
- Standard rulers and candles
* Angular diameter distance
* Luminosity distance
* Etherington's distance-duality relation
- Light travel (or lookback) time
- Comoving volume and intersection probability
- Exercises

Distance measures in cosmology

- Formula for conversion of cosmological redshift z into distance D ?
- How to define D in expanding Universe?
- Answer: D may be defined in different ways, depending on how it is measured
- FLRW metric:
- r, χ-dimensionless comoving radial coordinates

1. Proper distance between two objects: $D_{P}=R(t) \chi$

- distance which would be measured with rulers at the time of observation
- increasing with time

2. Comoving distance between two objects: $D_{C}=R_{0} \chi$

- equals to proper distance times the relative scale factor of the Universe now to then, or $(1+z)$:

Proper distance: Hubble-Lemaître law

- $R(t)$ represents the relative expansion of the Universe
- $R(t)$ relates the proper distance between a pair of objects, moving with the Hubble flow in an expanding or contracting Universe:

$$
D(t)=\frac{R(t)}{R\left(t_{0}\right)} D\left(t_{0}\right)
$$

- Lemaître, 1927, ASSB, 47, 49 (translated and reprinted in 1931, MNRAS, 91, 483):

$$
V_{r}=\dot{D}=\frac{\dot{R}}{R_{0}} D_{0}=\frac{\dot{R}}{R} D=H \cdot D
$$

- z due to Doppler effect:

$$
z=\frac{V_{r}}{c} \Rightarrow D(z)=\frac{c}{H} z
$$

Velocity-Distance Relation among Extra-Galactic Nebulae.
Hubble, 1929, PNAS, 15, 168

Line-of-sight comoving distance

- Derivation from FLRW metric: $d s^{2}=c^{2} d t^{2}-R^{2}(t)\left[d \chi^{2}+S_{k}^{2}(\chi) d \Omega^{2}\right]$
- For photons: $d s=0$, and for their radial tracks: $d \theta=d \varphi=0$, so:

$$
d s=0 \wedge d \Omega=0 \Rightarrow c d t=R(t) d \chi \Rightarrow d \chi=c \frac{d t}{R(t)} \Rightarrow \chi(t)=c \int_{t}^{t_{0}} \frac{d t^{\prime}}{R\left(t^{\prime}\right)}
$$

- On the other hand:

$$
\begin{aligned}
& 1+z=\frac{R_{0}}{R} \Rightarrow \dot{z}=-R_{0} \frac{\dot{R}}{R^{2}} \Leftrightarrow \frac{d z}{d t}=-\frac{R_{0}}{R} H \Leftrightarrow \frac{R_{0}}{R(t)} d t=-\frac{d z}{H(z)} \\
& D_{C}(t)=R_{0} \chi(t)=c \int_{t}^{t_{0}} \frac{R_{0}}{R\left(t^{\prime}\right)} d t^{\prime} \Leftrightarrow D_{C}(z)=c \int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}
\end{aligned}
$$

- $H(z)$ is given by the $1^{\text {st }}$ Friedmann equation for $\Lambda \mathrm{CDM}$ model, and then:
- Line-of-sight comoving distance:

$$
D_{C}(z)=D_{H} \int_{0}^{z} \frac{d z^{\prime}}{\sqrt{\Omega_{M}\left(1+z^{\prime}\right)^{3}+\Omega_{\kappa}\left(1+z^{\prime}\right)^{2}+\Omega_{\Lambda}}}, \quad D_{H}=\frac{c}{H_{0}}
$$

- Theoretical cosmological distance along radial coordinate in FLRW metric

Transverse comoving distance

- If $\delta \theta$ is an angle between two objects at the same z, then the distance between them is: $\delta \theta D_{\mathrm{M}}(z)$, where $D_{\mathrm{M}}(z)$ is their transverse comoving distance:

$$
D_{M}(z)= \begin{cases}D_{H} \frac{1}{\sqrt{\Omega_{\kappa}}} \sinh \left[\sqrt{\Omega_{\kappa}} D_{C}(z) / D_{H}\right], & \Omega_{\kappa}>0 \\ D_{C}(z), & \Omega_{\kappa}=0 \\ D_{H} \frac{1}{\sqrt{\left|\Omega_{\kappa}\right|}} \sin \left[\sqrt{\left|\Omega_{\kappa}\right|} D_{C}(z) / D_{H}\right], & \Omega_{\kappa}<0\end{cases}
$$

- Analytic solution:

$$
D_{M}(z)=D_{H} \frac{2\left[2-\Omega_{M}(1-z)-\left(2-\Omega_{M}\right) \sqrt{1+\Omega_{M} z}\right]}{\Omega_{M}^{2}(1+z)}, \Omega_{\Lambda}=0
$$

Measuring distances by standard rulers and standard candles

Angular diameter distance

- D_{A} is Measured by standard cosmological rulers: objects which linear diameter \boldsymbol{s} is known and does not change with cosmological time
- Defined as the ratio of an object's physical transverse size s to its observed angular size θ (in radians)
- Calculating \boldsymbol{D}_{A} from \boldsymbol{z} :

$$
D_{A}(z)=\frac{D_{M}(z)}{1+z}
$$

- Angular diameter distance between two objects at redshifts z_{1} and z_{2} :

$$
D_{A 12}=\frac{1}{1+z_{2}}\left[D_{M 2} \sqrt{1+\Omega_{\kappa} \frac{D_{M 1}^{2}}{D_{H}^{2}}}-D_{M 1} \sqrt{1+\Omega_{\kappa} \frac{D_{M 2}^{2}}{D_{H}^{2}}}\right]
$$

where $D_{M 1}$ and $D_{M 2}$ are the corresponding comoving distances

- D_{A} is often used in the theory of gravitational lensing

Luminosity distance

- D_{L} is obtained from observed flux f of standard cosmological candles: objects which luminosity L is known and does not change with cosmological time
- D_{L} is used in the case of SN Ia
- Calculating $\boldsymbol{D}_{\boldsymbol{L}}$ from \boldsymbol{z} :

$$
D_{L}(z)=(1+z) D_{M}(z)
$$

- Etherington's distance-duality relation: $D_{L}(z)=(1+z)^{2} D_{A}(z)$

- Valid for all cosmological models based on the Riemannian geometry
- Using inappropriate D causes errors which increase with z
- Typical mistake: calculating L from f using proper distance obtained by Hubble's law (instead of D_{L})

Light-travel distance

- Light-travel (lookback) time: time that it took light to reach the observer
- Difference between the age of the universe at the time of observation and its age at the time when the light was emitted:

$$
t_{L}(z)=t_{H} \int_{0}^{z} \frac{d z^{\prime}}{\left(1+z^{\prime}\right) E\left(z^{\prime}\right)}
$$

where $E(z)=\frac{H(z)}{H_{0}}=\sqrt{\Omega_{M}\left(1+z^{\prime}\right)^{3}+\Omega_{\kappa}\left(1+z^{\prime}\right)^{2}+\Omega_{\Lambda}}$

- Corresponding distance is:

$$
D_{T}(z)=c \cdot t_{L}(z)
$$

- t_{L} is used for time delays between images of gravitational lenses

Numerical comparison of cosmological distances

 I

Numerical comparison of cosmological distances II

Numerical comparison of cosmological distances III

Graphical comparison between cosmological distances

$$
H_{0}=72 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}, \Omega_{\mathrm{M}}=0.27, \Omega_{\Lambda}=0.73
$$

Comoving volume

- Volume in which number density of non-evolving objects locked into Hubble flow is constant with z
- Equals to proper volume times three factors of the relative scale factor now to then, or $(1+z)^{3}$
- Element of comoving volume for solid angle $d \Omega$ and redshift interval $d z$:

$$
d V_{C}(z)=D_{H} \frac{(1+z)^{2} D_{A}^{2}(z)}{E(z)} d \Omega d z
$$

- Total all-sky comoving volume, out to redshift z :

$$
V_{C}=\left[\begin{array}{ll}
\left(\frac{4 \pi D_{H}^{3}}{2 \Omega_{\kappa}}\right)\left[\frac{D_{M}}{D_{H}} \sqrt{1+\Omega_{\kappa} \frac{D_{N M}^{2}}{D_{H}^{2}}}-\frac{1}{\sqrt{\left|\Omega_{\kappa}\right|}} \operatorname{arcsinh}\left(\sqrt{\left|\Omega_{\kappa}\right|} \frac{D_{M}}{D_{H}}\right)\right], & \Omega_{\kappa}>0 \\
\frac{4 \pi}{3} D_{M}^{3}, & \Omega_{\kappa}=0 \\
\left(\frac{4 \pi D_{H}^{3}}{2 \Omega_{\kappa}}\right)\left[\frac{D_{M}}{D_{H}} \sqrt{1+\Omega_{\kappa} \frac{D_{M}^{2}}{D_{H}^{2}}}-\frac{1}{\sqrt{\left|\Omega_{\kappa}\right|}} \arcsin \left(\sqrt{\left|\Omega_{\kappa}\right|} \frac{D_{M}}{D_{H}}\right)\right], & \Omega_{\kappa}<0
\end{array}\right.
$$

Intersection probability

- Given a population of objects with:

1. $n(z)$ - comoving number density (number per unit volume) and
2. $\sigma(z)$ - cross section (area)

- Differential probability that a line of sight will intersect one of the objects in redshift interval $d z$ at redshift z :

$$
d P(z)=n(z) \sigma(z) D_{H} \frac{(1+z)^{2}}{E(z)} d z
$$

Exam question

1. Distance measures in cosmology

Literature

Articles:

1. David W. Hogg, 2000, Distance measures in cosmology, arXiv:astro-ph/9905116v4
2. Carroll, S. M., Press, W. H. \& Turner, E. L. 1992, The cosmological constant, ARA\&A, 30, 499
3. Davis, T. M. \& Lineweaver, C. H. 2004, Expanding Confusion:

Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe, PASA, 21, 97 (arXiv:astro-ph/0310808)

Online cosmology calculators:

4. A list of cosmology calculators: http://ned.ipac.caltech.edu/help/cosmology_calc.html
5. Ned Wright's Javascript Cosmology Calculator: http://www.astro.ucla.edu/~wright/CosmoCalc.html

Exercise 1

Consider two flat $\left(\Omega_{k}=0\right)$, expanding universes: One that is matter dominated, i.e. $\Omega_{\mathrm{M}}=1$, and one that is dominated by a cosmological constant, i.e. $\Omega_{\Lambda}=1$.
a) Derive for both universes an expression for the comoving distance as a function of redshift z.
b) The "observable universe" is the part of the universe up to redshift $z=\infty$. Compute for both of our universes the comoving volume of this region. Is there a qualitative difference between the two volumes?

Exercise 2

Assume a spatially flat universe, with $\Omega_{\text {tot }}=\Omega_{M}=1$ and derive the formulas for angular diameter distance $D_{A}(z)$ and luminosity distance $D_{L}(z)$ in this cosmological model.

Exercise 3

Assume a flat $\left(\Omega_{k}=0\right)$ cosmological model with $\mathrm{H}_{0}=71 / \mathrm{km} / \mathrm{s} / \mathrm{Mpc}$ and $\Omega_{\mathrm{M}}=0.27$, and graphically compare the following cosmological distances: $D_{C}(z), D_{A}(z), D_{L}(z)$ and naive Hubble distance: $D_{H}(z)=c z / H_{0}($ see Hogg 2000 and Davis \& Lineweaver 2004) .

Exercise 4

Write a Python script which computes angular diameter distance between two objects at redshifts z_{1} and z_{2} in the case of a flat $\left(\Omega_{k}=0\right)$ cosmological model with $\mathrm{H}_{0}=71 / \mathrm{km} / \mathrm{s} / \mathrm{Mpc}$ and $\Omega_{\mathrm{M}}=0.27$, and use it to reconsider the exercise with an alien astronomer by calculating all three angular diameter distances: $D_{A}\left(0, z_{a}\right)$ - between you and an alien at redshift $z_{a}=1, D_{A}\left(0, z_{q}\right)$ - between you and a quasar at $z_{q}=2$ and $D_{A}\left(z_{\alpha}, z_{q}\right)$ - between alien and quasar.

Solution 1

a) $D_{c}(z)=D_{H} \int_{0}^{z} \frac{d z^{\prime}}{\sqrt{\Omega_{M}\left(1+z^{\prime}\right)^{3}+\Omega_{\kappa}\left(1+z^{\prime}\right)^{2}+\Omega_{\Lambda}}}$

1. $\Omega_{\mathrm{M}}=1, \Omega_{\Lambda}=0, \Omega_{\kappa}=0: \quad D_{C}(z)=D_{H} \int_{0}^{z} \frac{d z^{\prime}}{\sqrt{\left(1+z^{\prime}\right)^{3}}}=2 D_{H}\left(1-\frac{1}{\sqrt{1+z}}\right)$
2. $\Omega_{\mathrm{M}}=0, \Omega_{\Lambda}=1, \Omega_{\kappa}=0: D_{C}(z)=D_{H} \int_{0}^{z} d z^{\prime}=D_{H} z$
b) $\quad \Omega_{\kappa}=0: \quad V_{C}(z)=\frac{4 \pi}{3} D_{M}^{3}(z)=\frac{4 \pi}{3} D_{C}^{3}(z)$
3. $\Omega_{\mathrm{M}}=1, \Omega_{\Lambda}=0: \quad V_{C}=\frac{32 \pi}{3} D_{H}^{3}$
4. $\Omega_{\mathrm{M}}=0, \Omega_{\Lambda}=1: V_{C}=\infty$

- The volume of the observable Universe in the case of the cosmological constant is not finite, while it is finite in the case of a matter dominated universe

Solution 2

$$
\begin{aligned}
& \Omega_{\kappa}=0 \Rightarrow D_{A}(z)=\frac{D_{M}(z)}{1+z}=\frac{D_{C}(z)}{1+z} \\
& \Omega_{M}=1 \wedge \Omega_{\Lambda}=0 \wedge \Omega_{\kappa}=0 \Rightarrow D_{C}(z)=2 D_{H}\left(1-\frac{1}{\sqrt{1+z}}\right) \Rightarrow \\
& D_{A}(z)=\frac{2 D_{H}}{1+z}\left(1-\frac{1}{\sqrt{1+z}}\right) \\
& D_{L}(z)=(1+z)^{2} D_{A}(z)=2 D_{H}(1+z)\left(1-\frac{1}{\sqrt{1+z}}\right)
\end{aligned}
$$

Solution 3

Solution is obtained by Python script in "cosm_dist.py"

Solution 4

Output from Python script in "DA.py":
Enter the 1st redshift: 1.0
Enter the 2nd redshift: 2.0
Enter the Hubble constant: 71.0
Enter the Omega_matter: 0.27
Angular diameter distance $\mathrm{DA}(0, \mathrm{zl})=1658.7 \mathrm{Mpc}$ Angular diameter distance DA($0, \mathrm{z2}$) $=1748.4 \mathrm{Mpc}$ Angular diameter distance DA(z1,z2) $=642.6 \mathrm{Mpc}$

