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1 Introduction

Light rays are deflected when they propagate through a gravitational field.
Long suspected before General Relativity – the theory which we believe pro-
vides the correct description of gravity – it was only after Einstein’s final
formulation of this theory that the effect was described quantitatively. The
rich phenomena which are caused by this gravitational light deflection has led
to the development of the rather recent active research field of gravitational
lensing, and the fact that the 2003 Saas-Fee course is entirely devoted to this
subject is just but one of the indications of the prominence this topic has
achieved. In fact, the activities in this area have become quite diverse and
are reflected by the three main lectures of this course. The phenomena of
light propagation in strong gravitational fields, as it occurs near the surface
of neutron stars or black holes, are usually not incorporated into gravita-
tional lensing – although the physics is the same, these strong-field effects
require a rather different mathematical description than the weak deflection
phenomena.

In this introductory first part (PART 1) we shall provide an outline of
the basics of gravitational lensing, covering aspects that are at the base of
it and which will be used extensively in the three main lectures. We start in
Sect. 1.1 with a brief historical account; the study of the influence of a gravita-
tional field on the propagation of light started long before the proper theory of
gravity – Einstein’s General Relativity – was formulated. Illustrations of the
most common phenomena of gravitational lensing will be given next, before
we will introduce in Sect. 2 the basic equations of gravitational lensing theory.
A few simple lens models will be considered in Sect. 3, in particular the point-
mass lens and the singular isothermal sphere model. Since the sources and
deflectors in gravitational lensing are often located at distances comparable
to the radius of the observable Universe, the large-scale geometry of space-
time needs to be accounted for. Thus, in Sect. 4 we give a brief introduction to
the standard model of cosmology. We then proceed in Sect. 5 with some basic
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considerations about lensing statistics, i.e., the question of how probable it is
that observations of a source at large distance are significantly affected by a
lensing effect, and conclude with a description of the large-scale matter distri-
bution in the Universe. The material covered in this introductory part will be
used extensively in the later parts of this book; those will be abbreviated as SL
(Strong Lensing, Kochanek, 2005, Part 2 of this book), WL (Weak Lensing,
Schneider, 2005, Part 3 of this book), and ML (MicroLensing, Wambsganss,
2005 Part 4 of this book).

Gravitational lensing as a whole, and several particular aspects of it, has
been reviewed previously. Two extensive monographs (Schneider et al. 1992,
hereafter SEF; Petters, Levine and Wambsganss 2001, hereafter PLW) de-
scribe lensing in great detail, in particular providing a derivation of the gravi-
tational lensing equations from General Relativity (see also Seitz et al. 1994).
Blandford and Narayan (1992) review the cosmological applications of gravi-
tational lensing, Refsdall and Surdej (1994) and Courbin et al. (2002) discuss
quasar lensing by galaxies and provide an intuitive geometrical optics ap-
proach to lensing, Fort and Mellier (1994) describe the giant luminous arcs
and arclets in clusters of galaxies, Paczyński (1996) reviews the effects of grav-
itational microlensing in the local group, the review by Narayan and Bartel-
mann (1999) provides a concise account of gravitational lensing theory and
observations, and Mellier (1999), Bartelmann and Schneider (2001), Wittman
(2002) and van Waerbeke and Mellier (2003) review the relatively young field
of weak gravitational lensing.

1.1 History of Gravitational Light Deflection

We start with a (very) brief account on the history of gravitational lensing;
the reader is referred to SEF and PLW for a more detailed presentation.

The Early Years, Before General Relativity

The Newtonian theory of gravitation predicts that the gravitational force F on
a particle of mass m is proportional to m, so that the gravitational acceleration
a = F/m is independent of m. Therefore, the trajectory of a test particle in
a gravitational field is independent of its mass but depends, for a given initial
position and direction, only on the velocity of the test particle. About 200
years ago, several physicists and astronomers speculated that, if light could
be treated like a particle, light rays may be influenced in a gravitational field
as well. John Mitchell in 1784, in a letter to Henry Cavendish, and later
Johann von Soldner in 1804, mentioned the possibility that light propagating
in the field of a spherical mass M (like a star) would be deflected by an angle
α̂N = 2GM/(c2ξ), where G and c are Newton constant of gravity and the
velocity of light, respectively, and ξ is the impact parameter of the incoming
light ray. At roughly the same time, Pierre-Simon Laplace in 1795 noted “that
the gravitational force of a heavenly body could be so large, that light could
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not flow out of it” (Laplace 1975), i.e., that the escape velocity ve =
√

2GM/R
from the surface of a spherical mass M of radius R becomes the velocity of
light, which happens if R = Rs ≡ 2GM/c2, nowadays called the Schwarzschild
radius of a mass M .

Gravitational Light Deflection in GR

All these results were derived under the assumption that light somehow can
be considered like a massive test particle; this was of course well before the
concept of photons was introduced. Only after the formulation of General
Relativity by Albert Einstein in 1915 could the behavior of light in a gravita-
tional field be studied on a firm physical ground. Before the final formulation
of GR, Einstein published a paper in 1911 where he recalculated the results
of Mitchell and Soldner (of whose work he was unaware) for the deflection
angle. Only after the completion of GR did it become clear that the ‘New-
tonian’ value of the deflection angle was too small by a factor of 2. In the
general theory of relativity, the deflection is

α̂ =
4GM
c2ξ

= 1.′′75
(
M

M�

)(
ξ

R�

)−1

. (1)

The deflection of light by the Sun can be measured during a total solar eclipse
when it is possible to observe stars projected near the Solar surface; light de-
flection then slightly changes their positions. A measurement of the deflection
in 1919, with a sufficient accuracy to distinguish between the ‘Newtonian’
and the GR value, provided a tremendous success for Einstein’s new theory
of gravity.

Soon thereafter, Lodge (1919) used the term ‘lens’ in the context of grav-
itational light deflection, but noted that ‘it has no focal length’. Chwolson
(1924) considered a source perfectly coaligned with a foreground mass, con-
cluding that the source should be imaged as a ring around the lens – in fact,
only fairly recently did it become known that Einstein made some unpublished
notes on this effect in 1912 (Renn et al. 1997) – hence, calling them ‘Einstein
rings’ is indeed appropriate. If the alignment is not perfect, two images of the
background source would be visible, one on either side of the foreground star.
Einstein, in 1936, after being approached by the Czech engineer Rudi Mandl,
wrote a paper where he considered this lensing effect by a star, including both
the image positions, their separation, and their magnifications. He concluded
that the angular separation between the two images would be far too small
(of order milli-arcseconds) to be resolvable, so that “there is no great chance
of observing this phenomenon” (Einstein 1936).

Zwicky’s Visions

This pessimistic view was not shared by Fritz Zwicky , who in 1937 published
two truly visionary papers. Instead of looking at lensing by stars in our Galaxy,
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he considered “extragalactic nebulae” (nowadays called galaxies) as lenses –
with his mass estimates of these nebulae, he estimated typical image separa-
tion of a background source to be of order 10′′ – about one order of magnitude
too high – and such pairs of images can be separated with telescopes. Observ-
ing such an effect, he noted, would furnish an additional test of GR, allow
one to see galaxies at larger distances (due to the magnification effect), and
would determine the masses of these nebulae acting as lenses (Zwicky 1937a).
He then went on to estimate the probability that a distant source would be
lensed to produce multiple images, concluded that about 1 out of 400 distant
sources should be affected by lensing (this is about the fractional area covered
by the bright parts of nebulae on photographic plates), and hence predicted
that “the probability that nebulae which act as gravitational lenses will be
found becomes practically a certainty” (Zwicky 1937b). As we shall see in due
course, basically all of Zwicky’s predictions became true.1

The Revival of Lensing

Until the beginning of the 1960’s the subject rested, but in 1963/4, three
authors independently reopened the field: Klimov (1963), Liebes (1964) and
Refsdal (1964a,b). Klimov considered lensing of galaxies by galaxies, whereas
Liebes and Refsdal mainly studied lensing by point-mass lenses. Their pa-
pers have been milestones in lensing research; for example, Liebes considered
the possibility that stars in the Milky Way can act as lenses for stars in
M31 – we shall see in ML, this is a truly modern idea. Refsdal calculated
the difference of the light travel times between the two images of a source –
since light propagates along different paths from the source to the observer,
there will in general be a time delay which can be observed provided the
source is variable, such like a supernova. Refsdal pointed out that the time
delay depends on the mass of the lens and the distances to the lens and
the source, and concluded that, if the image separation and the time delay
could be measured, the lens mass and the Hubble constant could be deter-
mined. We shall see in SL (Part 2) how these predictions have been realized in
the meantime.

In 1963, the first quasars were detected: luminous, compact (‘quasi-stellar’)
and very distant sources – hence, a source population had been discovered
which lies behind Zwicky’s nebulae, and finding lens systems amongst them
should be a certainty. Nevertheless, it took another 15 years until the first
lens system was observed and identified as such.

1 Zwicky thought he had found a gravitational lens system and said so at a con-
ference in the 1950s. Munch, one of his Caltech colleagues, said that if it were
a lens, he’d “eat his hat”. Sargent (from whom this story was communicated)
found the photographic plate after Zwicky’s death, hoping to improve Munch’s
diet, but concluded it was a plate defect.
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1.2 Discoveries

First Detections of Multiple Imaging (1979)

In their program to optically identify radio sources, Walsh et al. in 1979 dis-
covered a pair of quasars separated by about 6 arcseconds, having identical
colors, redshifts (zs = 1.41) and spectra (see Walsh 1989 for the history of this
discovery). The year 1979 also marked two important technical developments
in astronomy: the first CCD detectors replaced photographic plates, thus pro-
viding much higher sensitivity, dynamic range and linearity, and the very large
array (VLA), a radio interferometer providing radio images of subarcsecond
image quality, went into operation. With the VLA it was soon demonstrated
that both quasar images are compact radio sources, with similar radio spec-
tra. Soon thereafter, a galaxy situated between the two quasar images was
detected (Stockton 1980; Young et al. 1980). The galaxy has a redshift of
zd = 0.36 and it is the brightest galaxy in a small cluster. We now know
that the cluster contributes its share to the large image separation in this sys-
tem. Furthermore, the first very long baseline interferometry (VLBI) data of
this system, known as QSO 0957+561, showed that both components have a
core-jet structure with the symmetry expected for lensed images of a common
source (see Fig. 1). The great similarities of the two optical spectra (Fig. 2) is
another proof of the lensing nature of this system.

One year later, the so-called triple quasar PG 1115+080 was discovered
(Weymann et al. 1980). It apparently consisted of three images, one of which
was much brighter than the other two (see Fig. 3). Soon thereafter it was shown
that the bright image was in fact a blend of two images separated by ∼ 0.′′5,
and thus very difficult to resolve with optical telescopes from the ground. The
fact that the close pair is much brighter than the other two images is a generic
prediction of lens theory, as will be shown below.

Until 1990, a few more lens systems or lens candidate systems have been
discovered, some of them from a systematic search for lenses amongst radio
sources (e.g., Burke et al. 1992), but most of them serendipitously (such as
the one shown in Fig. 4). The 1990s then have witnessed several systematic
searches for lens systems, including programs carried out with the Hubble
Space Telescope (HST; Maoz et al. 1993), lens searches amongst 15,000 radio
sources (JVAS and CLASS; see King et al. 1999; Browne et al. 2003), and
those amongst very bright high-redshift quasars – these surveys will be de-
tailed in SL (Part 2). By now, more than 80 multiple-image lens systems with
a galaxy acting as the (main) lens are known.

Giant Luminous Arcs (1986)

In 1986, two groups (Lynds and Petrosian 1986; Soucail et al. 1987) indepen-
dently pointed out the existence of strongly elongated, curved features around
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Fig. 1. The two upper panels show a short (left) and longer (right) optical exposure
of the field of the double QSO 0957+561 (Young et al. 1981). In the short exposure,
the two QSO images are clearly visible as a pair of point sources, separated by ∼6′′.
The longer exposure reveals the presence of an extended source, the lens galaxy,
between the two point sources, as well as a small cluster of galaxies of which the
lens galaxy G1 is the brightest member. The lower left panel shows a 6 cm VLA
map of the system (Harvanek et al. 1997), where besides the two QSO sources A
and B, and the extended radio structure seen for image A, radio emission from
the lens galaxy G is also visible. The milli-arcsecond structure of the two compact
components A, B is shown in the lower right panel (Gorenstein et al. 1988a), where
it is clearly seen that one VLBI jet is a linearly transformed version of the other,
and they are mirror symmetric; this is predicted by any generic lens model which
assigns opposite parity to the two images

two clusters of galaxies (see Figs. 5 and 6). Their tangential extent relative
to the cluster center was at least ten times their radial extent, although the
exact value was difficult to determine as they were not well resolved in width
from the ground (HST has shown that this ratio is substantially larger than
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Fig. 2. Spectra of the two
images of the lens system
QSO 0957+561, obtained with
the Faint Object Spectrograph
on board HST (Michalitsianos et
al. 1997). The strong similarities
of the spectra, in particular the
same line ratios and the identical
redshift, verifies this system as a
definite gravitational lens system

10:1 in many cases). These giant luminous arcs were seen displaced from the
cluster center, and curving around it. Various hypotheses were put forward
as to their nature, and all proven wrong, except for one (Paczyński 1987),
when the redshift of the giant arc in A370 was measured (Soucail et al. 1988)
and shown to be much larger than the redshift of the cluster. The arc was
thus proven to be a highly distorted and magnified image of an otherwise nor-
mal, higher-redshift galaxy. By now, many clusters with giant arcs are known
and have been investigated in detail. As with most optical studies of lenses,
the high-resolution of the HST was essential to study the detailed brightness
distribution of arcs and to identify multiple images by their morphology and
colors. Less distorted images of background galaxies have been named arclets
(Fort et al. 1988); they can be identified in many clusters, and they are gen-
erally stretched tangentially with respect to the cluster center. In addition,
clusters can act as strong lenses also to produce multiple images of background
galaxies. Some of these aspects will be covered in Sect. 4 of WL (Part 3).

Rings, After All (1988)

Whereas Einstein ring images were predicted in the case of a perfectly
coaligned source with a spherically symmetric lens, the first multiple images
lens systems have taught us that lenses are far from spherical – thus, the dis-
covery of a radio ring in the source MG 1131+0456 (Hewitt et al. 1988) came
as a big surprise. Unfortunately, owing to its faint optical counterpart, the
lensing nature of this first system could not be proven easily, but the relative
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Fig. 3. In the left panel, a NIR image of the gravitational lens system PG 1115+080
is shown, taken with the NICMOS instrument on board HST. The QSO has a redshift
of zs = 1.72. The double nature of the brightest component is clearly recognized, as
well as the lens galaxy with redshift zd = 0.31, situated in the ‘middle’ of the four
QSO images. When the QSO images and the lens galaxy are subtracted from the
picture, the remaining image of the system (right panel) shows a nearly complete
ring, which is the lensed image of the host galaxy of the QSO, mapped onto a nearly
complete Einstein ring. In near-IR observations of lens systems, such rings occur
frequently (source: C. Impey and NASA, see Impey et al. 1998)

ease by which the radio source morphology, at several frequencies, could be
modeled by a simple gravitational lens (Kochanek et al. 1989) made a very
strong case for its lensing nature. The second radio ring discovered (Langston
et al. 1989) made a much cleaner case: of the two radio lobes of a redshift 1.72
quasar, one of them is imaged into a ring (see Fig. 7). At the center of this
ring lies a bright, redshift zd = 0.25 galaxy, responsible for the light deflection.
High-resolution imaging with HST in optical and near-infrared filters revealed
the presence of Einstein rings in many multiply imaged quasars (Fig. 8), where
the host galaxy of the active nucleus is the corresponding (extended) source.
We now know a lens needs not be exactly spherical; it is a combination of
the asymmetry (ellipticity) of the mass distribution and the source size that
determines whether we will see an Einstein ring (see SL Part 2, Sect. 10).
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Fig. 4. Around the center of this nearby spiral galaxy (zd = 0.04), four point-like
sources are seen is a fairly symmetric geometry (Yee 1988). Their spectra iden-
tify them as four images of a background QSO with zs = 1.7. This system, QSO
2237+0305, is the closest gravitational lens and one of the few systems where the
lens is a spiral; it has been found in a spectroscopic redshift survey of nearby galaxies

Fig. 5. The giant arc in the
cluster of galaxies Cl 2244−02,
taken with the ISAAC instru-
ment at the VLT (source: ESO
Press Photo 46d/98). The arc
has a redshift of zs = 2.24,
and was at the time of discov-
ery the highest redshift normal
galaxy. The high magnification
caused by the gravitational lens
renders this still (one of) the
brightest galaxies with z ≥ 2

Quasar Microlensing (1989)

The mass of galaxies is not distributed smoothly, since at least a fraction of it
is in stars. These stars will split the (macro)images of a quasar into many mi-
croimages whose typical separations of few micro-arcseconds are unresolvable.
However, these perturbations of the gravitational field change the magnifica-
tion of the macroimages, provided the source is sufficiently compact. Since



10 P. Schneider

Fig. 6. The cluster A2218 at z = 0.175 contains one of the most impressive systems
of arcs, as can be seen in the multi-color images taken with the WFPC2 instrument
on board HST (source: NASA/STScI). This cluster contains several multiple im-
age systems of background galaxies which, together with the morphology of arcs,
allows the construction of very detailed mass models for this cluster. Also remark-
able is the thinness of several of the arcs, so that they are not resolved in width
even with the HST; this implies very large length-to-width ratios of these arcs and,
correspondingly, very high magnifications

the source, the lens and the observer are not stationary, and the stars in the
galaxies move, this magnification will also change in time; the characteristic
time-scales are of order a decade or less, and in one case (QSO 2237+0305, see
Fig. 4) where the lens is very close to us (zd = 0.0395), even smaller. Hence,
as predicted by Chang and Refsdal (1979, 1984), Paczyński (1986a), Kayser
et al. (1986) and Schneider and Weiss (1987), this microlensing effect should
yield flux variations of the images which are uncorrelated between the different
images – an intrinsic variation of the source would affect the flux of all images
in the same way, though with a time delay. In 1989, this microlensing effect
was detected in the four image quasar lens QSO 2237+0305 as uncorrelated
brightness variations in the four images (Irwin et al. 1989).

Weak Lensing (1990)

As mentioned before, arclets are images of background galaxies stretched by
the lensing effect of a cluster. In order to identify an arclet as such, the im-
age distortion must be significant; otherwise, owing to the intrinsic ellipticity
distribution of galaxies, the stretching could not be distinguished from the
intrinsic shape. However, if the distortion field varies slowly with position,
then galaxy images lying close to each other should be distorted by a similar
degree. Since we live in a Universe where the sky is densely covered with faint
and small galaxies (e.g., Tyson 1988; Williams et al. 1996), an average over
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Fig. 7. The quasar MG 1654+13 at redshift zs = 1.72 is shown, both as an optical
image (gray scale) and in the radio (contours). The optical QSO is denoted as Q,
and is the central component (or core) of a triple radio source. The Northern radio
lobe is denoted by C, whereas the Southern radio lobe is mapped onto an Einstein
ring. At the center of this ring, one sees a bright galaxy with spectroscopic redshift
of zd = 0.25. This galaxy lenses the second radio lobe into a complete Einstein ring.
Within this ring, brightness peaks can be identified, and the components denoted A
and B are similar to, but not multiple images of, the brightness peak in the Northern
lobe C (source: G. Langston)

local ensembles of galaxies can be taken; the mean distortion of this ensemble
is then a measure for the lens stretching. This weak gravitational lensing effect
was first detected in two clusters in 1990 (Tyson et al. 1990). The advances
in optical imaging cameras, in particular the availability of large mosaic CCD
cameras which enable the mapping of nearly degree-sized fields in a single
pointing, and the development of specific image analysis tools, have permit-
ted the detection and quantitative analysis of weak lensing in many clusters.
Even weaker lensing effects, those by an ensemble of galaxies and of the large-
scale matter distribution in the Universe were discovered in 1996 (Brainerd
et al. 1996) and 2000 (Bacon et al. 2000; Kaiser et al. 2000; van Waerbeke
et al. 2000; Wittman et al. 2000); we shall report on this in WL (Part 3).
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Fig. 8. The gravitational lens system B 1938+666. The left panel shows a NIC-
MOS@HST image of the system, clearly showing a complete Einstein ring into
which the Active Galaxy is mapped, together with the lens galaxy situated near
the center of the ring. The right panel shows the NICMOS image as gray-scales,
with the radio observations superposed as contours. The radio source is indeed a
double, with one component being imaged twice (the two images just outside and
just inside the Einstein ring), whereas the other source component has four images
along the Einstein ring, with two of them close together (source: L.J. King, see King
et al. 1998)

Time Delays (≥ 1992)

Following Refsdal’s idea to determine the Hubble constant from lensing by
combining a good mass model for the lens with the time delay, the light
curves of the first double QSO 095+561 were monitored by several groups
in the optical and radio waveband (e.g., Vanderriest et al. 1989; Schild 1990;
Lehár et al. 1992). From these light curves, estimates of the time delay were
derived by a number of groups, and significantly different results were ob-
tained. Difficulties include seasonal gaps in the optical light curves and the
possibility of uncorrelated variability in the images due to microlensing by the
lensing galaxy. To account for these effects, different methods were developed,
yielding different results; broadly speaking, either delays of 410 days or 540
days were obtained. The issue was put to rest when a relatively sharp varia-
tion of the flux of the leading image was detected in December 1994 (Kundić
et al. 1995; Fig. 9). Each of the two estimates for the time delay predicted a
different epoch for the occurrence of the corresponding feature in the other
image. With the observation of the feature in the trailing image in February
1996 (Kundić et al. 1997), the controversy was resolved in favor of the short
delay, yielding 417 ± 3 days. Time delays have now been measured in 10 lens
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Fig. 9. Light curves of the two im-
ages of the QSO 0957+561A,B in two
different filters. The two light curves
have been shifted in time relative to
each other by the measured time de-
lay of 417 days, and in flux accord-
ing to the flux ratio. The sharp drop
measured in image A in Dec. 1994
and subsequently in image B in Feb.
1996 provides an accurate measure-
ment of the time delay (data from
Kundić et al. 1997)

systems, although the resulting estimates for the Hubble constant are still
problematic – see SL (Part 2).

Galactic Microlensing (1993)

Stars in our Galaxy can act as lenses for other stars or extragalactic sources;
however, the probability for this to occur is extremely small, as already noted
by Liebes (1964). However, if one considers a sufficient number of background
sources, even very small probabilities can be beaten. Such a lensing effect
would be noted as a magnification of the background star; owing to transverse
motion of source, lens and observer, the magnification changes in time and
leads to a characteristic light curve. Paczyński (1986b) proposed in 1986 to
monitor the brightness of stars in dense stellar fields of the Large Magellanic
Cloud to search for such characteristic variability. The main idea behind this
suggestion was to test whether the dark matter in the halo of our Galaxy,
necessary to explain the flat rotation curve of the Milky Way (and other
spiral galaxies) is made up of compact objects – brown dwarfs, neutron stars,
‘Jupiters’, black holes. The ‘only’ problem was that about 1 out of 107 stars
in the LMC is expected to be lensed at any given time – the number of
stars needed to be monitored is indeed large. Nevertheless, two groups started
this adventure in the early 1990s, and reported in 1993 the first microlensing
events toward the LMC (Alcock et al. 1993; Aubourg et al. 1993) (Fig. 10).
Shortly thereafter, a third group announced the discovery of microlensing
events toward the Galactic bulge (Udalski et al. 1993). Since then, this field has
flourished, and will be covered in depth in ML. In addition to the discovery of
a large number of microlensing events, these surveys provide unique data sets
which are also useful for other branches of astronomy, most notably studies
of stellar statistics and variability.
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Fig. 10. Blue and red light curve
of the first Galactic microlens-
ing event MACHO-LMC-1 (Al-
cock et al. 1993). Data points
with error bars show the mea-
sured brightness of a star in the
LMC as a function of time, and
the curve in both upper panels
show the best fitting ‘standard’
microlensing lightcurve. Overall,
the quality of the fit is impres-
sive, and the lack of chromatic ef-
fects, demonstrated by the con-
stancy of the flux ratio shown
in the lowest panel, strongly ar-
gues for this being a microlens-
ing event. However, some points
(in particular one close to the
maximum flux) deviate very sig-
nificantly from the simple model
lightcurve, indicating that this
may be a binary microlens

1.3 What is Lensing Good for?

Hopefully, by the end of these lectures we will have provided convincing an-
swers to this question, but for the impatient, we shall summarize some of the
highlights of lensing applications.

Measure Mass and Mass Distributions

Gravitational light deflection is determined by the gravitational field through
which light propagates. This in turn is related to the mass distribution via
the Poisson equation (or its GR generalization). It is essential to realize that
this simple fact implies that gravitational light deflection is independent of
the nature of the matter and of its state – lensing is equally sensitive to dark
and luminous matter, and to matter in equilibrium or far out of it. On the
negative side, this implies that lensing alone cannot distinguish between these
forms of matter, but on the positive side, it also cannot miss one of these
matter forms. Hence, lensing is an ideal tool for measuring the total mass of
astronomical bodies, dark and luminous.

From the Einstein deflection law (1), it is obvious that characteristic image
separations scale with the lens mass like M1/2; hence, the observation of
multiple images and rings immediately allows an estimate of the mass of
the lensing galaxy – or more precisely, the mass within a cylinder with a
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diameter of the image separation or the ring diameter, centered on the lens.2

More detailed modeling, and additional observables, such as flux ratios, can
yield very precise mass estimates. Indeed, as will be discussed in SL (Part
2), accurate mass estimates within galaxies, with an uncertainty of a few
percent, have been achieved – by far the most precise mass determinations
in (extragalactic) astronomy. Similarly, from the locations of giant arcs in
clusters, the masses of the central parts of clusters can be determined (Sect. 4
of WL Part 3). With the advent of HST imaging and the discovery of multiple
image systems in some strong lensing clusters, detailed mass models have been
obtained, which led to very precise mass estimates in those clusters (needless
to say, they confirm the dominance of dark matter in clusters).

Weak lensing studies of clusters estimate the mass distribution to much
larger radii than the strong lensing regime, and, like strong lensing effects,
probe for asymmetries and substructures in the cluster mass. For example,
already the strong lensing properties of the cluster A2218 (Fig. 6) reveals the
bimodal nature of the mass distribution. In fact, substructure in the mass
distribution of lens galaxies has been detected, thereby confirming one of the
robust predictions of the Cold Dark Matter model for our Universe (SL Part
2, Sect. 8). In addition, the mass distribution of galaxies at large radii, where
one runs out of local dynamical tracers, can be studied statistically using an
effect called galaxy–galaxy lensing (WL Part 3, Sect. 8).

Constraining the Number Density of Mass Concentrations

The probability for a lensing event to occur (e.g., the fraction of high-redshift
sources that are multiply imaged, or the fraction of stars undergoing mi-
crolensing) depends on the projected number density of potential lenses.
Hence, by investigating statistically well-defined samples of sources and their
lensed fraction, we can infer the number density of lenses. Examples of such
studies are estimates of the number density of compact objects in the dark
halo of our Galaxy, the redshift evolution of the number density of galaxies
acting as strong lenses, and the number density of clusters producing strong
and weak lensing signals. Upper limits on the number of lensing events can
also be translated into upper bounds on the number density of putative lenses:
e.g., the fact that nearly all multiply-imaged sources have a visible lens galaxy
puts strong upper bounds on the number density of dark lenses (they can at
most provide a few percent of the galaxy-mass objects), and the non-detection
of lens systems with image separations of tens of milli-arcseconds provides
bounds on the number density of compact galaxies with masses ∼ 109M�.
In fact, by now lensing has put stringent constraints on the population of
compact massive objects in the Universe over an extremely broad range of
mass scales, from ∼ 10−3M� (from upper limits on the variability of distant
2 Whereas this ‘cylinder’ contains all the mass inhomogeneities of the cosmic matter

distribution between the source and the observer, it is dominated by the mass of
the lensing galaxy.
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quasars) to ∼1016M� (from the absence of very wide pairs of quasars), with
only a few mass gaps within this range. Even lower-mass objects (∼10−6M�)
can be ruled out as significant contributors to the dark matter in our Milky
Way (see ML).

Providing Estimates of Cosmological Parameters

Following Refsdal’s idea, the Hubble constant can be obtained from the time
delay in multiple image systems. This method has the advantage of being inde-
pendent of the usual distance ladder used in determinations of H0, and it also
measures the Hubble constant on a truly cosmic scale, in contrast to the quite
local measurements based on Cepheid distances. Despite the determination
of time delays in a number of systems, values for H0 by lensing are burdened
with the uncertainties of the lens models; however, there is a trend toward
slightly lower values of the Hubble constant than obtained from Cepheids
(see SL Part 2, Sect. 5). Other cosmological parameters can also be obtained
from lensing. For example, the fraction of lensed high-redshift quasars when
combined with the distribution of image separations can be used to estimate
the cosmological model (SL Part 2, Sect. 6). Weak lensing by the large-scale
structure is sensitive to the matter density parameter and the normalization of
the density fluctuations, and significant constraints on these parameters have
been obtained (WL Part 3, Sect. 7). In particular in combination with results
from the anisotropy of the cosmic microwave background, future cosmic shear
studies will provide an invaluable probe of the equation of state of the dark
energy. Weak lensing has also successfully been used to determine the bias
parameter, which describes the relation between the statistical distribution of
galaxies and the underlying dark matter, and for which only few alternative
methods are available (WL Part 3, Sect. 8).

Lenses as Natural Telescopes

Since a lens can magnify background sources, these appear brighter than they
would without a lens. This makes it easier to investigate these sources in
detail, e.g. through spectroscopic observations. In some cases, this magnifica-
tion is even essential to detect the sources in the first place, provided their
lensed brightness just exceeds the detection threshold of a survey or of the
current instrumental sensitivity. This magnification effect has in fact yielded
spectacular results, such as very detailed spectra of very distant galaxies, the
detection of some of the highest redshift galaxies behind cluster lenses, and
the detection of very faint sub-millimeter sources in cluster fields.3 In fact,
3 A magnification by a factor of, say, 5 implies that a spectrum of the source can

be taken in 1/25-th of the time it would take to get the same signal-to-noise
spectrum of the unlensed source. Needless to say that such a factor can make the
difference between an observation being made and one that cannot be done.
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Fig. 11. Example for the use of a gravitational lens as a natural telescope. In a
search for very high redshift objects, deep multi-band HST images are taken near
the critical curves of clusters, where large magnifications are expected. Shown here
are images of a field in the cluster A2218 (see Fig. 6) in four filters, ranging from
0.6 μm to the near-IR at 1.6 μm. In the two larger wavelength images, a double source
is seen, which is absent at shorter wavelength. The two components are situated at
opposite sides of the critical curve, which is drawn for three source redshifts of zs = 6,
6.5 and 7; due to the large number of strong lensing constraints for this cluster, its
mass distribution in the central part is very well determined. The sticks indicate
the shear field of the cluster, and the elongation of the double images is parallel to
this shear, as expected if they were gravitationally lensed images. From the location
of the images with respect to the critical curve, and the drop-out of their flux at
wavelengths shorter than ∼ 0.8 μm, the redshift of the source is estimated to be
between zs = 6.5 to 7 (from Kneib et al. 2004)

the lens magnification can be very large in some rare cases, but these rare
cases truly stick out: some of the most extreme sources, with regards to their
apparent luminosity, are strongly magnified – such as the spectacular IRAS
galaxy F10214 (e.g., Broadhurst and Lehár 1995), the by-far brightest redshift
∼3 galaxy cB58 (Seitz et al. 1998), or the extremely luminous z = 3.87 quasar
QSO APM 08279+5255 (Irwin et al. 1998).4 A good fraction of known galax-
ies with redshift larger than ∼ 4 have been detected behind cluster lenses,
including the redshift record holder candidate (z = 10.0) at present (Pelló
et al. 2004); see Fig. 11 for an example. During high-magnification Galac-
tic microlensing events, detailed spectra of stars at large distances (e.g. the
Galactic bulge) have been taken. As the high magnification region crosses a
distant star, observations have mapped the surface brightness distribution of
the stars to test stellar atmosphere models.

With the lenses as magnifiers, larger effective angular resolution of the
sources is obtained. Galaxies acting as sources for giant arcs can therefore be
resolved in unprecedented detail, at least in one dimension. The host galaxy
of quasars, which is difficult to study in unlensed objects owing to the large
brightness contrast between the active nucleus and the surrounding host, can
4 Such extremely bright quasars are of great importance for the study of the inter-

galactic absorption, e.g., the Ly-α forest; no surprise then that such objects, like
the highly magnified z = 3.62 QSO1422+231, are preferred targets for investi-
gating absorption lines.
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be studied much more easily when lensing allows the spatial resolution of the
host – in many cases, the host galaxy is in fact mapped into an Einstein ring
(see Figs. 3 and 8).

Searches for Planets

The light curves of Galactic microlensing events are affected by companions of
the main lens. For example, light curves of binary stars are readily identified
as such, provided their separation falls into a favorable range determined by
the geometry of the lens system. Because of that, even planets will leave an
observable trace in the microlensing light curves if they are situated at the
right radius from the star and at the right orbital phase. Although these traces
can be quite subtle, and last for a short time only, current observing campaigns
aimed at the search for planets have the sensitivity for their detection, and
several candidate events for the detection of planetary signals in microlensing
light curves have been reported. Indeed, microlensing is considered to be the
simplest (and cheapest) possibility to detect the presence of low-mass planets
around distant stars (ML).

These few examples should suffice to illustrate the broad range of appli-
cations of gravitational lensing; the ever increased publication rate of articles
investigating and applying gravitational lensing underlines the timeliness of
the subject.

2 Gravitational Lens Theory

Assuming the validity of General Relativity, light propagates along the null
geodesics of the space–time metric. However, most astrophysically relevant
situations permit a much simpler approximate description of light rays, which
is called gravitational lens theory. In this section, we summarize the basic
equations for the description of light deflection in a gravitational field. The
reader is referred to SEF and PLW for a more detailed account and further
references.

2.1 The Deflection Angle

Consider first the deflection of a light ray by the exterior of a spherically
symmetric mass M . Provided that the ray impact parameter ξ is much larger
than the Schwarzschild radius of the mass, ξ � Rs ≡ 2GM c−2, then General
Relativity predicts that the deflection angle α̂ is

α̂ =
4GM
c2 ξ

. (2)

This is just twice the value obtained in Newtonian gravity (see Sect. 1.1).
According to the condition ξ � Rs, the deflection angle is small, α̂ � 1. This
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condition also implies that the Newtonian gravitational field strength is small,
φN/c

2 � 1.
The field equations of General Relativity can be linearized if the gravita-

tional field is weak. The deflection angle of an ensemble of mass points is then
the (vectorial) sum of the deflections due to the individual mass components.
A three-dimensional mass distribution with volume density ρ(r) can be di-
vided into cells of size dV and mass dm = ρ(r) dV . Let a light ray pass this
mass distribution, and describe its spatial trajectory by (ξ1(λ), ξ2(λ), r3(λ)),
where the coordinates are chosen such that the incoming light ray (i.e., far
from the deflecting mass distribution) propagates along r3. The actual light
ray is deflected, but if the deflection angle is small, the ray can be approxi-
mated as a straight line in the neighborhood of the deflecting mass (note that
this corresponds to the Born approximation in atomic and nuclear physics). A
mass distribution for which this condition is satisfied is called a geometrically-
thin lens. Then, ξ(λ) ≈ ξ, independent of the affine parameter λ. Note that
ξ = (ξ1, ξ2) is a two-dimensional vector. The impact vector of the light ray
relative to the mass element dm at r′ = (ξ′1, ξ

′
2, r

′
3) is then ξ−ξ′, independent

of r′3, and the total deflection angle is

α̂(ξ) =
4G
c2

∑
dm(ξ′1, ξ

′
2, r

′
3)

ξ − ξ′

|ξ − ξ′|2

=
4G
c2

∫
d2ξ′

∫
dr′3 ρ(ξ

′
1, ξ

′
2, r

′
3)

ξ − ξ′

|ξ − ξ′|2 , (3)

which is also a two-dimensional vector. Since the last factor in (3) is indepen-
dent of r′3, the r′3-integration can be carried out by defining the surface mass
density

Σ(ξ) ≡
∫

dr3 ρ(ξ1, ξ2, r3) , (4)

which is the mass density projected onto a plane perpendicular to the in-
coming light ray. Thus, the deflection angle produced by an arbitrary density
distribution is

α̂(ξ) =
4G
c2

∫
d2ξ′Σ(ξ′)

ξ − ξ′

|ξ − ξ′|2 , (5)

provided that the deviation of the actual light ray from a straight (undeflected)
line within the mass distribution is small compared to the scale on which the
mass distribution changes significantly. This condition is satisfied in virtually
all astrophysically relevant situations (i.e., lensing by galaxies and clusters of
galaxies), unless the deflecting mass extends all the way from the source to
the observer (a case which will be dealt with in WL Part 3). It should also be
noted that in a lensing situation such as that displayed in Fig. 12, the incoming
light rays are not mutually parallel, but fall within a beam with opening angle
approximately equal to the angle which the mass distribution subtends on the
sky. This angle, however, is typically very small (in the case of cluster lensing,
the relevant angular scales are of order 1 arc min ≈ 3 × 10−4 radians).
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Fig. 12. Sketch of a typical gravitational lens system

2.2 The Lens Equation

A typical situation considered in gravitational lensing is sketched in Fig. 12,
where a mass concentration at redshift zd (or distance Dd) deflects the light
rays from a source at redshift zs (or distance Ds). If there are no other deflec-
tors close to the line-of-sight, and if the extent of the deflecting mass along the
line-of-sight is very much smaller than both Dd and the distance Dds from the
deflector to the source,5 the actual light rays which are smoothly curved in
the neighborhood of the deflector can be replaced by two straight rays with a
kink near the deflector. The magnitude and direction of this kink is described
by the deflection angle α̂, which depends on the mass distribution of the de-
flector and the impact vector of the light ray. The lens equation relates the
true position of the source to its observed position on the sky. As sketched in
Fig. 12, the source and lens planes are defined as planes perpendicular to a
straight line (the optical axis) from the observer to the lens at the distance

5 This condition is very well satisfied in most astrophysical situations. A cluster of
galaxies, for instance, has a typical size of a few Mpc, whereas the distances Dd,
Ds, and Dds are fair fractions of the Hubble length cH−1

0 = 3 h−1 × 103 Mpc.
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of the source and of the lens, respectively. The exact definition of the opti-
cal axis does not matter because of the smallness of the angles involved in a
typical lens system. Let η denote the two-dimensional position of the source
on the source plane, measured with respect to the intersection point of the
optical axis with the source plane. From Fig. 12 we can read off the geometric
condition that (again making use of the smallness of angles occurring, so that
sin α̂ ≈ α̂ ≈ tan α̂)

η =
Ds

Dd
ξ −Ddsα̂(ξ) . (6)

Introducing angular coordinates by

η = Dsβ and ξ = Ddθ , (7)

we can transform (6) to

β = θ − Dds

Ds
α̂(Ddθ) ≡ θ − α(θ) , (8)

where we defined the scaled deflection angle α(θ) in the last step. The inter-
pretation of the lens equation (8) is that a source with true position β can
be seen by an observer to be located at angular positions θ satisfying (8).
If (8) has more than one solution for fixed β, a source at β has images at
several positions on the sky, i.e., the lens produces multiple images. For this
to happen, the lens must be ‘strong’. We can express the scaled deflection
angle in terms of the surface mass density as

α(θ) =
1
π

∫

IR2
d2θ′ κ(θ′)

θ − θ′

|θ − θ′|2 , (9)

where we have defined the dimensionless surface mass density or convergence

κ(θ) :=
Σ(Ddθ)
Σcr

with Σcr =
c2

4πG
Ds

Dd Dds
, (10)

where the critical surface mass density Σcr depends on the distances to the
source and the lens. As will be discussed later (Sect. 2.4), a mass distribution
which has κ ≥ 1 somewhere, i.e., Σ ≥ Σcr, produces multiple images for some
source positions. Hence, Σcr is a characteristic value for the surface mass
density which is the dividing line between ‘weak’ and ‘strong’ lenses.6

The lens equation (8) describes a mapping θ → β from the lens plane
to the source plane; for any mass distribution Σ(ξ), this mapping can (in
principle) be easily calculated. One problem of gravitational lens theory is
the inversion of (8), i.e., to find all the image positions θ for a given source
6 In order to derive the foregoing equations, we have used Euclidean geometry

to relate angles to length scales. We shall discuss in Sect. 4 that the equations
still hold in an expanding universe, provided the distances D’s are interpreted as
angular diameter distances – hence, in the notation of Sect. 4, D ≡ Dang.
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position β. Since the mapping θ → β is non-linear, the inversion of the lens
equation can be carried out analytically only for very simple mass models of
the lens. As the number of images θ for a given source β is not known a priori,
a numerical inversion is non-trivial in general; however, we shall see below that
there are methods to determine the image multiplicity as a function of the
source position.

The identity ∇ ln |θ| = θ/|θ|2, valid for any two-dimensional vector θ,
shows that the (scaled) deflection angle can be written as a gradient of the
deflection potential,

ψ(θ) =
1
π

∫

IR2
d2θ′ κ(θ′) ln |θ − θ′| (11)

as
α = ∇ψ , (12)

so that the mapping θ → β is a gradient mapping. Furthermore, using the
identity ∇2 ln |θ| = 2πδD(θ), where δD is the (two-dimensional) Dirac delta
‘function’, one obtains from (11) that

∇2ψ = 2κ , (13)

which is the Poisson equation in two dimensions. The similarity between these
lensing relations and standard three-dimensional gravity (ψ corresponds to
the gravitational potential φN, α corresponds to the acceleration vector, κ
corresponds to the volume mass density ρ) shall be noted.

For later purposes, we shall find it useful to define a further scalar function

τ(θ;β) =
1
2

(θ − β)2 − ψ(θ) , (14)

called the Fermat potential; this is a function of the lens plane coordinate θ,
with the source position β entering as a parameter. It should be noted that

∇τ(θ;β) = 0 (15)

is equivalent to the lens equation (8). As has been shown in Schneider (1985);
see also SEF), the function τ(θ;β) is, up to an affine transformation, the
light travel time along a ray starting at position β, traversing the lens plane
at position θ and arriving at the observer. Thus, (15) expresses the fact that
physical light rays are those for which the light travel time is stationary –
which thus expresses Fermat principle in the context of lensing by a geomet-
rically thin matter distribution. We shall see that the Fermat potential – or
time-delay function – is very useful for a classification of the multiple images
in a gravitational lens system. Displaying lens properties in terms of the Fer-
mat potential (Blandford and Narayan 1986) provides useful insight in the
behavior of the lens mapping.
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2.3 Magnification and Distortion

The solutions θ of the lens equation yield the angular positions of the images
of a source at β. The shapes of the images will differ from the shape of the
source because light bundles are deflected differentially, as we saw from the
images of giant arcs in Fig. 6. In general, the shape of the images must be de-
termined by solving the lens equation for all points within an extended source.
Liouville theorem and the absence of emission and absorption of photons in
gravitational light deflection imply that lensing conserves surface brightness
(or specific intensity). Hence, if I(s)(β) is the surface brightness distribution
in the source plane, the observed surface brightness distribution in the lens
plane is

I(θ) = I(s)[β(θ)] . (16)

If a source is much smaller than the angular scale on which the lens properties
change, the lens mapping can be linearized locally. The distortion of images
is then described by the Jacobian matrix

A(θ) =
∂β

∂θ
=
(
δij −

∂2ψ(θ)
∂θi∂θj

)
=
(

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)
, (17)

where we have introduced the components of the shear γ ≡ γ1 +iγ2 = |γ|e2iϕ,

γ1 =
1
2
(ψ,11 − ψ,22) , γ2 = ψ,12 , (18)

and κ is related to ψ through Poisson equation (13). Hence, if θ0 is a point
within an image, corresponding to the point β0 = β(θ0) within the source,
we find from (16), using the locally linearized lens equation,

I(θ) = I(s) [β0 + A(θ0) · (θ − θ0)] . (19)

According to this equation, the images of a source with circular isophotes
are ellipses. The ratios of the semi-axes of such an ellipse to the radius of
the source are given by the inverse of the eigenvalues of A(θ0), which are
1 − κ ± |γ|, and the ratio of the solid angles subtended by an image and the
unlensed source is the inverse of the (absolute value of the) determinant of A.
The inverse of the Jacobian is called the magnification tensor,

M(θ) = A−1 , (20)

and yields the local mapping from the source to the image plane. The fluxes
observed from the image and from the unlensed source are given as integrals
over the brightness distributions I(θ) and I(s)(β), respectively, and their ratio
is the magnification |μ(θ0)|. From (19), we find for the magnification of a
‘small’ source

μ = detM =
1

detA =
1

(1 − κ)2 − |γ|2 . (21)
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The images are thus distorted in shape and size. The shape distortion is due to
the tidal gravitational field, described by the shear γ, whereas the magnifica-
tion is caused by both isotropic focusing due to the local matter density κ and
anisotropic focusing due to shear. The magnification as defined in (21) can
have either sign; the sign of μ is called the parity of an image. Negative-parity
images are mirror-symmetric images of the source. Of course, the observed
fluxes of images are determined by the absolute value of μ. Since the intrinsic
luminosity of sources is unknown, the magnification in a lens system is not an
observable. However, the flux ratio of different images provides a direct mea-
surement of the (absolute value of the) corresponding magnification ratio. In
general, if two extended images of a source are observed, then their shapes
depend on the shape of the source through A. As the shape of the source is
unknown, what can be determined from the shape of extended images is the
relative magnification matrix Aij = A(θi)A−1(θj), which provides the lin-
earized mapping of one image onto the other. Note that Aij is in general not
symmetric and thus has four independent components. For a pair of images
with opposite parity, detAij < 0, and so these two images are mirror sym-
metric; an example of this can be seen in the VLBI images of QSO 0957+561
(see Fig. 1).

To consider the distortion of the shape of images in somewhat more detail,
we shall rewrite the Jacobian in a slightly different form,

A(θ) = (1 − κ)
(

1 − g1 −g2
−g2 1 + g1

)
, (22)

where we have defined the reduced shear

g ≡ γ

1 − κ
=

|γ|
1 − κ

e2iϕ . (23)

As can be easily seen from (3), the factor (1 − κ) only yields an isotropic
stretching of the image, but does not affect its shape. The reduced shear
g – like γ – is considered to be a complex number, g = g1 + ig2 and its
components determine the change of shape between the source and the image.
In particular, a circular source of unit radius is mapped onto an ellipse with
axes |(1 − κ)(1 + |g|)|−1 and |(1 − κ)(1 − |g|)|−1, and the orientation of the
ellipse is determined by the phase ϕ of g. As will be seen in WL (Part 3), the
reduced shear is the central quantity in weak gravitational lensing.

The images of a small source (what that means depends on the context;
see below) are therefore magnified by |μ(θi)|, and the total magnification of
a small source at position β is given by the sum of the magnifications over all
its images,

μp(β) =
∑

i

|μ(θi)| , (24)

where the index ‘p’ indicates that this equation applies to the point-source
limit. The magnification of real sources with finite extent is given by the
weighted mean of μp over the source area,
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μ =
[∫

d2β I(s)(β)
]−1 ∫

d2β I(s)(β)μp(β) , (25)

where I(s)(β) is the surface brightness profile of the source. Whereas grav-
itational lensing is achromatic, because the deflection of photons does not
depend on their frequency, the finite resolution of observations can lead to
color terms in practice, since the surface brightness distribution I(s)(β) can
be different at different frequencies. Then, if the magnification μp(β) varies
on scales comparable to the source size, the magnification of an extended but
unresolved source can depend on the frequency.

Since the shear is defined by the trace-free part of the symmetric Jaco-
bian matrix A, it has two independent components. There exists a one-to-one
mapping from symmetric, trace-free 2 × 2 matrices onto complex numbers,
and we shall extensively use complex notation. Note that the shear (and the
reduced shear) transforms as e2iϕ under rotations of the coordinate frame,
and is therefore not a vector (but a polar, i.e., it has the same transformation
properties as the linear polarization of electromagnetic waves). Equations (11)
and (18) imply that the complex shear can be written as

γ(θ) =
1
π

∫

IR2
d2θ′ D(θ − θ′)κ(θ′) , with

D(θ) ≡ θ2
2 − θ2

1 − 2iθ1θ2
|θ|4 =

−1
(θ1 − iθ2)2

. (26)

2.4 Critical Curves and Caustics, and General Properties of Lenses

In any lens there can be closed, smooth curves, known as critical curves, on
which the Jacobian vanishes, detA(θ) = 0. The curves in the source plane
which are obtained by mapping the critical curves with the lens equation are
called caustics, which are not necessarily smooth, but can develop cusps. Criti-
cal curves and caustics are of great importance for a qualitative understanding
of the lens mapping, owing to their following properties:

1. The magnification μ = 1/detA formally diverges for an image on a critical
curve. Infinite magnifications are of course unphysical. All astronomical
sources have a finite size that keeps their observed magnification (25)
finite. For a hypothetical source of vanishing extent, the magnification
would be finite because the geometrical optics approximation then breaks
down and we must use wave optics. The resulting diffraction patterns pre-
dict finite, though potentially very high magnifications (see e.g. Ohanian
1983 or Chap. 7 of SEF). Nevertheless, a source located near a caustic can
produce very highly magnified images close to the corresponding critical
curve in the lens plane.

2. The number of images a source produces depends on its location relative
to the caustic curves. Assuming a mass profile of a lens for which the
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deflection angle tends to zero for large |θ| – as is true for all real lenses
– and an upper bound to the deflection angle (i.e., excluding point-mass
lenses for the moment), a source at large |β| will have only one image, at
θ ≈ β, whereas it can have multiple images for small impact vectors. The
lens mapping (8) is locally invertible at all locations for which detA 
= 0.
This immediately implies that a change of the source position does not
lead to the change of the number of images unless the source moves across
a caustic – since caustics are obtained by mapping the critical curves
(where the lens mapping in not invertible) onto the source plane. When a
source position crosses a caustic, a pair of images near the corresponding
critical curve is either created or destroyed, depending on the direction
of crossing. The side of the caustic where the number of images is larger
by two is often called the ‘inner side’. A source close to, and on the inner
side of a caustic possesses a pair of images with very high and nearly
equal magnification on either side of the critical curve, in addition to any
other images. The bright pair must have opposite parities because the
magnification changes sign at the critical curve.

Whereas the critical curves are smooth, this does not need to be the case
for caustics. To see that, let θ(λ) be a parameterization of a critical curve;
the caustic then is β(θ(λ)). The tangent vector to the critical curve is the
derivative θ̇(λ) ≡ dθ(λ)/dλ, and the tangent vector to the caustic is

dβ(θ(λ))
dλ

=
∂β

∂θ

dθ

dλ
= A(θ(λ)) θ̇(λ) .

This vector, however, can vanish if the tangent vector to the critical curve θ̇(λ)
is parallel to the eigenvector of A whose eigenvalue is 0 (remember that we
are analyzing a critical curve, along which one eigenvalue of A is always zero).
Hence, if the direction of the tangent vector to the critical curve is the singular
direction of A, the caustic curve need not be smooth; in fact, it has a cusp.
Apart from any cusps the caustic curves are smooth curves called fold caustics.
These names are taken from singularity theory, a mathematical discipline that
studies the critical points of general mappings. We shall see the occurrence
of cusps later in several specific examples of lens mappings. A source close to
and inside a cusp has three highly magnified images near the corresponding
point on the critical curve; one can show (see e.g. Schneider and Weiss 1992;
Mao 1992) that the sum of the absolute values of the magnification of the two
outer images equals the absolute value of the magnification of the central of
these three images. A source just outside the cusp has one highly magnified
image near the corresponding critical curve.

We thus obtain a qualitative understanding of the geometry of a lens
mapping from the critical curves and caustics. The critical curves divide the
lens plane into regions of positive (i.e., μ > 0) and negative (μ < 0) parity. The
corresponding caustics divide the source plane into regions of different image
multiplicity: whenever a source position changes across a caustic, the number
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of images changes by ±2. Since for mass distributions without singularities
(e.g., point masses) the number of images is 1 if the angular source position
is sufficiently distant from the mass concentration, the number of images can
be easily assigned to each of the regions in the source plane, once the caustics
are known.

If an extended source is located on the caustic, either fold or cusp, the
corresponding two or three images merge; only that part of the source which
lies inside the inner region of the caustic is (locally) multiply imaged. Since
detA = 0 implies that (at least) one of the two eigenvalues of A vanishes, the
image(s) are highly distorted in the direction of the corresponding eigenvector;
therefore, the image of a circular source can be very strongly elongated. This
is the origin of the giant luminous arcs in clusters. From what has been said
above, for a cusp the singular direction is tangent to the critical curve; hence,
if an arc is produced by a source on a cusp, the direction of elongation displays
approximately the local direction of the critical curve.

Types of Images

The Fermat potential τ(θ;β) introduced in Sect. 2.2 yields a convenient clas-
sification of images, according to whether an image θ is located at a minimum,
maximum, or saddle point of τ – remember that images of a source occur at
points θ for which τ is stationary. Since the Jacobian matrix is the Hessian of
τ , Aij = ∂2τ/(∂θi∂θj), these three types of images are distinguished by the
signs of the two eigenvalues ai of A: At a minimum of τ , both are positive,
implying that detA > 0, trA > 0, whereas at a maximum, both are nega-
tive so that detA > 0, trA < 0. At a saddle point, the signs of the ai are
different, so that detA < 0. Given that

trA = 2(1 − κ) , (27)

one sees that minima (maxima) occur at positions where κ < 1 (κ > 1),
whereas nothing can be said about κ at saddles.

Odd-Number and Magnification Theorems

In a remarkable, one-page paper, Burke (1981) proved a theorem on the num-
ber of images a gravitational lens can produce: For a gravitational lens with a
smooth surface mass density which decreases faster than |θ|−1 as |θ| → ∞, the
number of images corresponding to extrema of τ , and thus to positive parity
images, equals the number of saddle points plus 1, provided the source is not
located on a caustic. Hence, the total number of images is odd. In addition,
at least one of the images corresponds to a minimum of τ .

The proof of this theorem is obtained using the Poincaré–Hopf index the-
orem and can also be found in Sect. 5.4 of SEF. The fact that any source has
at least one image corresponding to a minimum of τ is easily seen: the Fer-
mat potential τ(θ;β) behaves like |θ|2/2 for |θ| → ∞, i.e., increases for large
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impact vectors, and since it is a smooth function, it must attain a minimum
somewhere. In particular this implies that smooth lenses cannot make sources
disappear. A simple way to see the validity of this theorem follows from what
has been said above about the regions of different image multiplicity: A very
misaligned source has one image, corresponding to a minimum of τ , and the
number of images changes by ±2 (one of either parity) whenever the source
crosses a caustic, and thus is always odd.

As shown by Schneider (1984), a minimum image is magnified, provided
κ ≥ 0. This follows directly from the properties of minima,

0 < detA = (1 − κ)2 − |γ|2 < 1 ,

where the final inequality follows from trA > 0. Since each source is mapped
onto at least one minimum image, the positive density constraint implies that
the total magnification of all sources is larger than unity; in other words, the
flux of a source behind a lens is larger than the unlensed source. What may
sound as a contradiction on first sight – ‘all sources are magnified’ (which has
triggered a rich and often confusing literature on the ‘flux conservation’ issue)
is due to the assumed positivity of the surface density κ which is certainly
the case near to strong lenses. However, most lines-of-sight in the inhomoge-
neous Universe pass through regions which are slightly underdense relative to
the homogeneous Universe, resulting in negative κ – since κ is defined as the
projected mass overdensity relative to the smooth Universe. The mean magni-
fication over the sphere of sources at given redshift indeed is unity (Weinberg
1976) if the magnification is defined relative to the flux the same source would
have in a homogeneous universe of the same mean density.

These two theorems can also be generalized to the case that the deflect-
ing matter distribution is not a geometrically-thin lens, both using heuristic
arguments (SEF) or a rigorous proof (Seitz and Schneider 1992).

Necessary and Sufficient Conditions for Multiple Imaging

A matter distribution described by its dimensionless surface mass density κ
may or may not be sufficiently strong to cause multiple images of sources.
Two general criteria for the occurrence of multiple images can be obtained:

1. An isolated transparent lens can produce multiple images if, and only if,
there is a point θ with detA(θ) < 0. This can be shown as follows: if
detA(θ) > 0 for all θ, then the lens equation is globally invertible, and
so no multiple images can occur. On the other hand, if detA(θ0) < 0 at
some point θ0, then a source at β0 ≡ β(θ0) has an image (at θ0) which
corresponds to a saddle point; according to the odd-number theorem, there
must be at least two additional images corresponding to extrema of τ .

2. A sufficient (but not necessary) condition for possible multiple images is
that there exists a point θ such that κ(θ) > 1. The argument is similar
to the one above: if κ(θ0) > 1, then the source at β0 ≡ β(θ0) has an
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image which cannot correspond to a minimum of τ , as for them κ < 1;
hence, the source must have at least one additional image corresponding
to a minimum.

The second criterion shows why lenses with κ > 1 are called ‘strong’:
whereas κ > 1 is not a necessary condition for the possible occurrence of
multiple images, the critical surface mass density Σcr is nevertheless the char-
acteristic scale for the occurrence of strong lensing features likes arcs and
multiple images. It should be noted that the critical surface mass density de-
pends on the redshift (or distance) of the source; for a given physical surface
mass density Σ, the lens strength increases with increasing source redshift
since Σcr decreases. This also implies that the critical curves are different for
sources at different redshifts; this effect is clearly seen in several clusters of
galaxies where strong lensing phenomena occur at different separations from
the cluster center for sources of different redshifts.

2.5 The Mass-Sheet Degeneracy

Suppose you observe a multiply-imaged source for which the image positions,
their fluxes and perhaps their shapes (in the case of resolved images) can
be measured. One then wants to find a mass model for the lens which can
reproduce the observational constraints in order to obtain information about
the mass distribution in the lens. Whereas this topic will be treated in SL
(Part 2), Sect. 5, and in a somewhat different context in WL (Part 3), we can
already here consider the question of how unique such models can be, even if
one assumes a great number of observational constraints. A partial answer to
the question is provided by the existence of the mass-sheet degeneracy (Falco
et al. 1985; Gorenstein et al. 1988b; for the weak lensing case, see Schneider
and Seitz 1995).

Let κ(θ) be a mass distribution which provides a good fit to the observables
(i.e., image positions, flux ratios, relative image shapes in the case of extended
images, etc.); then the whole family of lens models with mass distribution

κλ(θ) = (1 − λ) + λκ(θ), (28)

provides an equally good fit to the data. The first term corresponds to adding a
homogeneous surface mass density κc = 1−λ to the mass distribution, whereas
the second term describes a rescaling of the ‘original’ mass distribution κ(θ).
We shall now prove the statement made above.

The lens equation corresponding to κλ reads

β = θ − αλ(θ) with αλ(θ) = (1 − λ)θ + λα(θ) , (29)

where quantities without index ‘λ’ correspond to the unscaled mass distribu-
tion κ(θ). Indeed,

αλ(θ) = ∇ψλ(θ) where ψλ(θ) =
1 − λ

2
|θ|2 + λψ(θ) , (30)
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so that the Poisson equation (13) is satisfied, ∇2ψλ = 2κλ. By combining the
two equations (29), one finds

β

λ
= θ − α(θ) , (31)

so that the lens equation for the transformed mass distribution κλ has the
same form as for the untransformed mass distribution, except that the coor-
dinates in the source plane is multiplied by 1/λ. However, this rescaling is not
directly observable. As a consequence, the Jacobi matrix and the magnifica-
tion behave as

Aλ = λA ; μλ =
μ

λ2
; (32)

the first of these relations then implies with (17) that γλ(θ) = λγ(θ) and
(1 − κλ) = λ(1 − κ), in agreement with (28). However, the reduced shear g
(23) is unchanged under the transformation, which means that the axis ratios
of the elliptical images of a round source are unaffected by the transformation.
In general, if nothing sets an absolute scale for the source (size or luminosity)
or an absolute mass scale for the lens (e.g., from observations of its stellar
dynamics), then one cannot distinguish the model described by κ from one
described by κλ. In particular, the critical curves and the curves with κ = 1
are unaffected by the transformation (28). However, the Fermat potential
transforms as

τλ(θ;β) =
1
2
(θ − β)2 − ψλ(θ) = λτ(θ;β/λ) + const. , (33)

where the const. only depends on β. As noted before, the Fermat potential
is, up to an affine transformation, the light travel time from the source to
the observer when passing through the lens plane at θ. Therefore, since the
difference in the Fermat potential calculated at two image positions is pro-
portional to the differences in light travel time, the mass-sheet degeneracy
changes this observable time delay. If we know the value of H0 from other
cosmological observations, we can break the degeneracy and determine the
absolute surface mass density of a lens. The implications of the mass-sheet
degeneracy for lens determinations of the Hubble constant will be described
in SL (Part 2). Furthermore, since the transformation (28) leaves the image
shapes of extended sources unchanged, the weak lensing techniques to be de-
scribed in WL (Part 3) are unable to break the mass-sheet degeneracy, unless
magnification information can be used – see (32). In addition, the mass-sheet
degeneracy can be broken if sources with different distances Ds are lensed,
since for a given physical mass density Σ, the resulting convergence κ will be
different for different source distances, owing to the dependence of Σcr on the
source redshift.

Up to now we have not constrained the value of λ in (28); however, not
all values are physically meaningful. For example, for some values of λ the
resulting mass distribution κλ may attain negative values. Depending on κ,
the non-negativity of the surface mass density will restrict the possible value
of λ.
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3 Simple Lens Models

For a general mass distribution, the deflection angle has to be obtained
through numerical integration; however, for some relatively simple mass dis-
tributions, analytical expressions can be obtained. We shall introduce here a
few simple mass models for lenses which turn out to be useful for understand-
ing many of the lensing phenomena. The simplest lens models are obtained if
the mass distribution is assumed to be spherically symmetric or, of relevance
for lensing, if the projected mass distribution is axially symmetric, as then
the lens equation reduces essentially to a one-dimensional equation. We shall
consider the general properties of such lenses before specializing to two highly
relevant cases, the point-mass lens, or more generally, the light deflection ex-
terior to a spherically-symmetric mass distribution, and the isothermal sphere
lens. The former one is of utmost relevance for Galactic microlensing, as will
be demonstrated in ML, whereas the latter is often used as a simple prescrip-
tion for the (dark) matter distribution of galaxies and clusters. Clusters and
galaxies are not expected to have axisymmetric gravitational potentials; we
shall consider the next simple lens models – those which have two axes of
symmetry, like elliptical mass distributions – and their generic behavior next.

3.1 Axially Symmetric Lenses

An axisymmetric matter distribution is characterized by Σ(ξ) = Σ(|ξ|), if the
origin is chosen at the center of symmetry, implying κ(θ) = κ(|θ|). The scaled
deflection angle α(θ) is then collinear to θ, as follows from the symmetry of
the situation; indeed, from (9) one obtains that

α(θ) =
θ

|θ|2 2
∫ |θ|

0

dθ′ θ′ κ(θ′) or

α̂(ξ) =
ξ

|ξ|2
4G
c2

2π
∫ ξ

0

dξ′ ξ′ Σ(ξ′) ≡ 4GM(|ξ|)
c2 |ξ|2

ξ , (34)

where M(ξ) is the projected mass enclosed by the circle of radius ξ = |ξ|. The
deflection due to a geometrically-thin axisymmetric mass distribution at a
point ξ is thus the point-mass deflection angle (2) for the mass M(|ξ|) enclosed
by the circle with radius |ξ|. This fact is analogous to Birkhoff theorem in
three-dimensional gravity which states that the gravitational force caused by
a spherically-symmetric mass shell vanishes inside of it; here, the axisymmetric
mass in rings causes no deflection at points within them.

Since α is collinear with θ, so is β, as seen from (8). Hence, if the source
position is described by β = βe, where e is a unit vector, then θ = θe as well,
and the lens equation becomes one-dimensional,

β = θ − α(θ) , (35)

where the deflection angle has the properties
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α(θ) = −α(−θ) =
m(θ)
θ

= κ̄(θ)θ , (36)

where m(θ) is the dimensionless mass inside a circle of angular radius θ and
κ̄(θ) is the mean surface mass density inside of θ,

m(θ) = 2
∫ θ

0

dθ′ θ′ κ(θ′) , κ̄(θ) =
m(θ)
θ2

. (37)

For calculating the Jacobian matrix, it is useful to write the lens equation in
the form

β = [1 − κ̄(|θ|)] θ ; (38)

then, according to (17) one finds from differentiation that

A(θ) = [1 − κ̄(|θ|)] I − κ̄′

|θ|

(
θ2
1 θ1θ2

θ1θ2 θ2
2

)
, (39)

where I is the two-dimensional identity matrix, and κ̄′(θ) ≡ dκ̄/dθ = 2
[
κ(θ)−

κ̄(θ)
]
/θ. Comparing (39) with the final form of (17), one sees that indeed

trA = 2(1 − κ), and the shear is

γ(θ) =
[
κ(θ) − κ̄(θ)

]
e2iϕ , (40)

where we set θ = θ(cosϕ, sinϕ); hence, the phase of the shear is the same
as the polar angle of θ, as expected from symmetry. The determinant of the
Jacobian matrix can be calculated either from (21) as

detA = (1 − κ)2 − |γ|2 = (1 − κ)2 − (κ̄− κ)2 = (1 − κ̄) (1 + κ̄− 2κ) , (41)

or, using the original definition (17) of A as

detA =
β

θ

dβ
dθ

= (1 − κ̄) (1 − κ̄− θκ̄′) , (42)

which can be seen, by inserting the derivative of κ̄, to yield the same expres-
sion.

The fact that detA factorizes allows a very simple characterization of the
critical curves of these axisymmetric lenses: Critical curves, which of course are
circles in this case, occur either when 1−κ̄(θ) = 0, or when 1+κ̄(θ)−2κ(θ) = 0.
The former ones are called tangential critical curves, the latter ones radial crit-
ical curves. The reason for naming them this way is found by considering the
distortion of images close to these critical curves. Consider an image posi-
tion on the θ1-axis; according to (39), the Jacobian matrix is diagonal there,
A = diag(1+ κ̄−2κ, 1− κ̄). Near a tangential critical curve, the second eigen-
value becomes very small. If the image was a circle, the corresponding source
in the source plane would be a highly flattened ellipse, with the minor axis in
the β2-direction being much smaller than the major axis. This implies that if
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the source is a circle, then the corresponding image near the tangential critical
curve will be a highly elongated ellipse, with the highly stretched axis in the
θ2 direction, that is, tangent to the direction toward the center of the lens.
Analogous reasoning shows that the image of a circular source near a radial
critical curve will be strongly stretched in the radial direction. Recalling the
shape and orientation of giant luminous arcs, this consideration suggests that
arcs are images of (probably relatively round) sources occurring close to the
tangential critical curves of the cluster lenses.

Tangential critical curves are thus characterized by the condition κ̄ = 1.
The simplicity of this relation implies that from the location of the tangential
critical curve, one can immediately determine the mass inside of it, using (37),
namely πθ2

E D
2
d Σcr, where θE is the angular radius of the critical curve. The

relation between θE and the mass enclosed within θE is

θE =
(

4GM
c2

Dds

DDDs

)1/2

≈ 0.′′9
(
M(≤ θE)
1012M�

)1/2(
Dds 1Gpc
DDDs

)1/2

, (43)

where we used the definition (10) of the critical surface mass density. Thus,
if giant arcs indeed trace the location of the tangential critical curve, their
observation can be used to obtain a (at least approximate) mass estimate for
the corresponding cluster mass inside of it (we shall come back to this issue
in much mode detail in Sect. 4 of WL Part 3). The caustic corresponding to
a tangential critical curve is a very special one: according to (38), the whole
circle θ = θE is mapped onto the origin β = 0 in the source plane: the
caustic degenerates into a point. This degeneracy occurs solely due to the
highly symmetric situation of the lens model; as we shall see later, any slight
perturbation of the mass distribution will ‘unfold’ this caustic point into a
curve of finite extent. This symmetric situation then leads to the following
result: if a source is placed onto the caustic point, it will be imaged by the
lens into a ring with radius θE, plus an additional image at the center of the
lens with θ = 0. Such rings were predicted by Chwolson (1924), but already
in 1911, Einstein has discussed their possible occurrence in his notebook, as
shown in Renn et al. (1997). Whereas real lenses are not expected to be
perfectly axisymmetric, and therefore one would also not expect to find such
Einstein rings, they have indeed been detected, as shown in Fig. 7; as will be
explained in Sect. 10 of SL (Part 2), the occurrence of rings depends on a
combination of the mass asymmetry in a lens and the extent of the source.
If the source in an axisymmetric lens is moved away from the caustic point,
the ring will break up into two images, located near the Einstein radius, on
opposite side of the lens center; their image separation will be Δθ ≈ 2θE.

Radial critical curves are circles where 1+κ̄(θ)−2κ(θ) = 0, or, equivalently,
dα/dθ = 1. Their corresponding caustics are circles in the source plane. In
clusters of galaxies, these radial critical curves give rise to radial arcs seen
close to the cluster center, whereas they are not seen in galaxy lenses.
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General Properties of Axisymmetric Lenses

One can derive several general properties of axisymmetric lenses; again we
shall assume that α(θ) → 0 as |θ| → ∞, that the deflection angle is bounded,
|α| ≤ αmax, and that α(θ) is a differentiable function. Then one can show that
a source with sufficiently large β has only a single image at θ ≈ β (the validity
of this property is intuitively clear, but can be proven rigorously; see SEF).

Further, a lens can produce multiple images if, and only if, there exists at
least one value of θ where dβ/dθ = 1 + κ̄(θ) − 2κ(θ) < 0. The necessity is
obvious, since if dβ/dθ ≥ 0 throughout, β(θ) is a monotonic function, which
can be globally inverted, and no multiple solutions can occur. Sufficiency is
seen as follows: if dβ/dθ < 0 at one point, then there must exist a pair
of points such that dβ/dθ = 0 (note that these points lie on radial critical
curves), since asymptotically for large |θ|, dβ/dθ → 1. Hence, β(θ) then has
a local maximum (say at θ1) and a local minimum (at θ2 > θ1), and between
these two values the function β(θ) decreases. A source located at β0 with
β(θ2) ≤ β0 ≤ β(θ1) then has at least three images, one with θ < θ1, one with
θ > θ2, and one with θ1 < θ < θ2. The points β(θ1) and β(θ2) lie on radial
caustics (see Sect. 3 of SL Part 2, for graphical illustrations of this point).

The conditions for the possible occurrence of multiple images can also be
phrased in terms of the surface mass density: A necessary condition for the
occurrence of multiple images is that κ > 1/2 at least at one point. This can
be seen by noting that dβ/dθ < 0 implies κ > (1 + κ̄)/2 > 1/2. A sufficient
condition for the possible occurrence of multiple images is κ > 1 at least at one
point; this property has been shown already for a general mass distribution,
and in this special situation can be seen as follows: if the maximum of κ
occurs at θm, then κ(θm) > 1 and κ(θm) ≥ κ̄(θm), which implies dβ/dθ < 0
at θm, which according to the property shown before is a sufficient condition
for possible multiple images.

The most useful statement on multiple imaging applies to centrally con-
densed lenses; those are mass distributions where κ(θ) does not increase with
θ, or κ′(θ) ≤ 0 for θ ≥ 0. These mass profiles are the only relevant ones
in astrophysics. Centrally condensed lenses are capable of producing multi-
ple images if, and only if, κ(0) > 1. Sufficiency was shown already. Necessity
follows from this: if κ(0) ≤ 1, then κ̄ ≤ 1 for all θ; then, one finds that
dβ/dθ = (1 − κ̄) − θκ̄′ > 0, since κ̄ is also a non-increasing function of θ.
Another way to phrase the multiple image condition for centrally condensed
lenses is dα/dθ > 1 at the origin.

3.2 The Point-Mass Lens

Consider a point mass M or, equivalently, the outside region of a spherical
mass distribution of total mass M ; let the mass be located at the origin of
the lens plane. Then the surface mass density is Σ(ξ) = MδD(ξ), and from
(5) one finds for the deflection angle
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α̂(ξ) =
4GM
c2

ξ

|ξ|2 , (44)

hence the amplitude of the deflection angle agrees with (2), and its direction
is the same as that of ξ, as expected from symmetry. Specializing (8) to the
current lens model yields

β = θ − 4GMDds

c2 DDDs

θ

|θ|2 = θ − θ2
E

θ

|θ|2 , (45)

where in the second step we have used the definition (43) of the Einstein angle
which depends on the lens mass M and the distances to lens and source. If we
choose without loss of generality the source position β to be on the positive
β1-axis, then θ will also be on the θ1 axis, and the lens equation becomes one-
dimensional. Scaling the angles in terms of the Einstein angle as y := β/θE,
x := θ/θE, (45) becomes y = x− 1/x, with the two solutions

x± =
1
2

(
y ±

√
y2 + 4

)
, (46)

i.e., one image on each side of the lens. Note that x+ ≥ |x−|, hence the
image on the same side of the lens as the source is further away from the lens
than the other image. In the language of the previous section, m(θ) = θ2

E,
κ̄(θ) = (θE/θ)2 = x−2, so that we find from (41) the image magnification to
be

μ =
1

detA =
1

1 − κ̄2
=
(

1 − 1
x4

)−1

. (47)

As seen from (46), x+ ≥ 1, and so μ(x+) ≡ μ+ ≥ 1. On the other hand, the
magnification of the second image can be rather small if x− becomes small.
The magnification of the two images and the total magnification of the source
is

μ± = ±1
4

[
y

√
y2 + 4

+

√
y2 + 4
y

± 2

]

, μp = μ+ + |μ−| =
y2 + 2

y
√
y2 + 4

;

(48)
hence, unless y <∼ 1, the secondary image will be strongly demagnified. The
image separation

Δθ = 2θE
√

1 + y2/4 >∼ 2θE (49)

is therefore only slightly larger than 2θE in relevant cases, since for values of
y >∼ 1 the secondary image will be demagnified below the detection threshold.
The sum of the two magnifications is μp ≈ 1.34 for y = 1.

The magnification formally diverges for x = 1, or θ = θE, which justifies
using the same name as for the tangential critical curve in Sect. 3.1. But what
about the odd-number theorem (see Sect. 2.4)? Remember, for its validity the
smoothness of the mass distribution was assumed, but a point-mass lens is
not smooth; in particular, the deflection potential ψ has a logarithmic spike
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at the origin. In fact, one can easily picture where the third image has been
‘lost’: Assume one would smear out the mass M over a small but finite region
(say in the shape of a Gaussian), the central surface mass density κ0 would be
very high but finite; in that case, there would be a maximum of the Fermat
potential close to the center (the exact position depending on the location
of the source), hence the third image would appear there. Its magnification
μ3 ≈ (κ0 − 1)−2 � 1 would then be very small.

3.3 The Singular Isothermal Sphere

A simple lens model which applies, at least to first order, to the lensing proper-
ties of galaxies and clusters is the so-called singular isothermal sphere (SIS).
This spherical mass distribution yields flat rotation curves, such as are ob-
served for spiral galaxies. Their density distribution is described by

ρ(r) =
σ2

v

2πGr2
. (50)

Physically this model corresponds to a distribution of self-gravitating
particles where the velocity distribution at all radii is a Maxwellian with
one-dimensional velocity dispersion σv (hence, the term ‘isothermal’). The
three-dimensional velocity dispersion is

√
3σv, and the Keplerian rotation ve-

locity (i.e., the velocity of particles on a circular orbit) is vc =
√

2σv.
The mass distribution (50) has two pathological properties: the central

density diverges as ρ ∝ r−2 (hence the name ‘singular’), and the total mass
of this distribution diverges as r → ∞. The former feature can be cured by
introducing a finite core radius, whereas the distribution for large r does not
affect the lensing properties at smaller radii. In SL (Part 2) and WL (Part 3)
we shall discuss the constraints lensing provides on the core radius of galaxy
and cluster lenses.

The SIS Lens Model

For the reasons just mentioned, the singular isothermal sphere is often used
as a mass model for gravitational lenses; its surface mass density Σ(ξ) follows
from projection of (50) along the line-of-sight,

Σ(ξ) =
∫ ∞

−∞
dr3 ρ

(√
ξ2 + r23

)
=

σ2
v

2G
ξ−1 . (51)

As will be shown immediately, the Einstein radius of this lens model is

θE = 4π
(σv

c

)2 Dds

Ds
, (52)

in terms of which one obtains
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κ(θ) =
θE
2|θ| ; κ̄(θ) =

θE
|θ| ; |γ|(θ) =

θE
2|θ| ; α(θ) = θE

θ

|θ| ; (53)

note that the magnitude of α is constant. Here we use the same notation as
introduced before (34). The fact that κ̄(θE) = 1 shows that θE is the tangential
critical curve of the SIS. The lens equation then reads

β = θ − θE
θ

|θ| , or y = x− x

|x| , (54)

where the second form employs the scaled angles x = θ/θE, y = β/θE. As
before, we set y ≥ 0; then, for y < 1, there are two images, at x+ = y+ 1 and
x− = y − 1, i.e., on opposite sides of the lens center, with image separation
Δθ = 2θE. For y > 1, only one image occurs, at x+ = y + 1. x+ corresponds
to a minimum of the Fermat potential, whereas x− to a saddle point, so that
the subscripts denote the parity of the two images. The magnification can be
calculated from (41), noting that κ̄ = 2κ, so that

μ =
1

detA =
1

1 − κ̄
=

|x|
|x| − 1

; (55)

hence, since x+ > 1, μ+ > 1, whereas the secondary image, with |x−| < 1,
can be strongly demagnified as x− → 0, or y → 1. From (40) we find that
|γ(x)| = κ(x) = 1/(2x); thus, images are stretched in the tangential direction
by a factor |μ|, whereas the distortion factor in the radial direction is unity.
The total magnification of a point source is μp = 2/y for y ≤ 1, and (1+ y)/y
for y ≥ 1.

Again, what about the odd-number theorem? As was true for the point-
mass lens, the mass distribution of the SIS is not smooth, so the theorem does
not apply. Another ‘strange’ property of the SIS is that the number of images
changes by ±1 when the source position crosses the circle y = 1 – this is in
apparent conflict to what we said in Sect. 2.4. Both of these effects are due
to the singular mass distribution as θ → 0, which causes |α| to be constant.
If we smoothed out the central mass singularity, by introducing a small but
finite core, then the deflection angle would be constant, except very close to
the center where it would make a smooth transition from −θE for θ < 0 to
+θE for θ > 0. In this transition region, there will be two points (at θ = ±θr)
where dα/dθ = 1, corresponding to a radial critical curve. The corresponding
caustic circle will have radius βr

<∼ θE. A source with |β| < βr will have three
images, one at x ≈ y+1, one with x ≈ y− 1 and one in the inner core region,
whereas a source with |β| > βr has just one. The lens equation maps the small
circle with radius θr onto the circle βr ≈ θE. When we now let the core radius
go to zero, βr → θE, the magnification of the central image μ3 → 0, and the
central region of the lens that is mapped onto βr ≈ θE decreases to zero area.
Hence, this limit process suggests that one can consider the third image to be
present, located at θ = 0, and having zero magnification.
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3.4 Non-Symmetric Lenses

To describe the mass profile of real lenses, more complicated (and realistic)
radial mass profiles can be used; even though the lens equation may no longer
be analytically solvable, the fact that it is one-dimensional renders numer-
ical investigations simple. The qualitative features of (centrally-condensed)
axisymmetric lenses do not depend strongly on the details of the radial pro-
file and can basically be read-off from the corresponding Young diagram (see
Sect. 3 of SL Part 2).

Breaking the symmetry leads to qualitatively new properties of the lens.
Most obvious of them, the central caustic point gets unfolded into a curve
of finite size; a source situated inside this curve can then have five images.
The fact that many of the observed lens systems have four images (i.e., five
minus the one being invisible probably due to very strong demagnification at
the center) shows that the axisymmetric models are definitely not sufficient
to explain them.

The next more complicated gravitational potential is then one with two
lines of symmetry, such as an ellipse has. Hence, one would be tempted to
consider mass distributions where κ is constant on (confocal) ellipses. In fact,
Bourassa et al. (1973), Bourassa and Kantowski (1975), and later Schramm
(1990) have considered the lensing properties of such elliptical lenses – they
turn out to be fairly complicated analytically in general; nevertheless, for some
of the most relevant radial density profiles, explicit expressions for the deflec-
tion angle can be derived (e.g., Kormann et al. 1994; Keeton and Kochanek
1998; see SL Part 2), and such elliptical mass models are generally used for
fitting observed lens systems. Here we consider a simpler class of lens mod-
els with similar symmetry, namely axisymmetric matter distributions with an
external perturbation, henceforth called ‘quadrupole lenses’.

Quadrupole Lenses

Even if the mass distribution of a lens is axisymmetric (like that of a star), the
corresponding gravitational potential is not expected to share this symmetry,
because lenses are typically not isolated: a galaxy is often situated inside
or near a group of galaxies, and the other member galaxies, and the dark-
matter halo of the group, will perturb the symmetry of the potential. In many
cases of astrophysical interest, like the one just mentioned, the perturbing
gravitational field changes very little over the relevant length scale of the
main lens. As an example, consider a lens galaxy in a cluster of galaxies. The
relevant length scale of the galaxy is about the region where the multiple
images occur, i.e., a region with radius of the Einstein radius, or typically 1′′.
In contrast, the relevant length scale of the cluster perturbation is either the
separation of the galaxy from the cluster center, or the Einstein radius of the
cluster, whatever is larger, and thus typically much larger than 1′′. It is thus
natural to expand the deflection potential of the perturber about the center
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of the main deflector; the lowest-order, non-trivial term in the expansion is
the quadratic term (tidal field). The analogous situation occurs for a star in
a distant galaxy, where the symmetry of the point-mass lens is broken by the
tidal field of its host galaxy; this is the situation considered by Chang and
Refsdal (1984); see ML).

Here we study the lens action of an axisymmetric matter distribution which
is perturbed by a larger-scale gravitational field, and we assume that the
latter is locally (that is, over the region where we want to study the lensing
properties of the main deflector) well described by its second-order Taylor
approximation. Choosing the origin to be the center of the main lens, and the
orientation of the coordinate system such that the Hessian of the deflection
potential of the perturber (or tidal matrix) is diagonal at the origin, then the
deflection caused by the perturber can be written as

αp(θ) = αp(0) +
(
κp + γp 0

0 κp − γp

)
θ , (56)

where the surface mass density and shear of the perturber are labeled with
subscript ‘p’. Note that the strength of the perturbation is not assumed to be
small. The lens equation then reads

β = [1 − κ̄(|θ|)] θ −
(
κp + γp 0

0 κp − γp

)
θ , (57)

where we have translated the origin in the source plane by the vector αp(0).
The perturber thus adds a uniform sheet of matter plus an external shear.
The uniform sheet can be transformed away, recalling our discussion of the
mass-sheet degeneracy in Sect. 2.5; indeed, (57) can be rewritten as

β̂ :=
β

1 − κp
=
(

1 − gp 0
0 1 + gp

)
θ − ˆ̄κ(|θ|)θ , (58)

where gp = γp/(1 − κp) is the reduced shear of the perturber, β̂ the rescaled
source coordinate, and ˆ̄κ(|θ|) = κ̄(|θ|)/(1 − κp) the rescaled surface mass
density. We shall in the following discard the hats on the variables in (58).

Although an axisymmetric lens with an external shear is too simple to
represent real lenses, the resulting lens equation is sufficiently simple to al-
low some analytical progress; for didactic purposes, we shall discuss this lens
model in somewhat more detail. The lens equation now is two-dimensional,
and therefore more complicated to invert (i.e., to find all image positions for
a given source position) than in the axisymmetric case. However, the lens
equation can be recast into a one-dimensional equation, by introducing polar
coordinates θ = θ(cosϕ, sinϕ) in the lens plane; then, (58) can be written as

cosϕ =
β1

θ [1 − κ̄(θ) − gp]
, sinϕ =

β2

θ [1 − κ̄(θ) + gp]
, (59)



40 P. Schneider

and by adding the squares of these two equations,

θ2
[
(1 − κ̄)2 − g2

p

]2
− β2

1 (1 − κ̄+ gp)2 − β2
2 (1 − κ̄− gp)2 = 0 , (60)

the polar angle ϕ has been eliminated: (60) is an equation for θ only and can be
solved numerically. For each solution θ, the polar angle can be calculated from
(59). Not all solutions will have | cosϕ| ≤ 1 and | sinϕ| ≤ 1; those solutions
θ have been generated by a number of algebraic manipulations needed to
arrive at (60) and thus shall be discarded then. We just saw a nice example
of reducing the effective dimension of a problem to make it more tractable.

The Jacobian for the quadrupole lens can be obtained from its definition
(17), and its determinant reads

detA = (1 − κ̄)2 − g2
p − θκ̄′ (1 − κ̄+ gp cos 2ϕ) , (61)

so that the critical curves can be easily calculated: for each value of θ,
the condition detA = 0 yields a value for cos 2ϕ; if this lies between ±1,
one has found a pair (θ, ϕ) of coordinates on the critical curve; in fact, one
has obtained four different critical points, one in each quadrant of the lens
plane, due to the symmetry of our lens model with respect to both reflections
(θ1, θ2) �→ ±(±θ1,±θ2). Hence, the structure of critical curves and caustics for
quadrupole lenses can be easily investigated, at least numerically.

The Non-Singular Isothermal Sphere with External Shear

We now consider a specific example of a quadrupole lens which has frequently
been used in lens modeling: the perturbed non-singular isothermal sphere, for
which

κ(θ) =
θe
θc

(
1 +

θ2

2θ2
c

)(
1 +

θ2

θ2
c

)−3/2

, κ̄(θ) =
θe√

θ2 + θ2
c

, (62)

so that κ(0) = θe/θc is finite. The complex form of κ(θ) is chosen so that the
deflection profile is simple. We note that for θ � θc, the mass distribution
approaches that of an SIS with Einstein angle θe, but for a finite θc, θe is not
the location of the critical curve, but in general, θE =

(
θ2
e − θ2

c

)1/2 for θc < θe;
otherwise, the lens is not critical. For this lens model, the one-dimensional
form (60) of the lens equation can be even further simplified, by noting that
(62) implies θ2 = θ2

e/κ̄
2 − θ2

c . Inserting this expression into (60), one obtains
after multiplying by κ̄2 an equation which is a sixth-order polynomial in κ̄.
Given that standard methods are known (e.g., Press et al. 1992) to find all
solutions of polynomials, this latter form is much more useful; the roots of this
polynomial are potential solution if they are real, and have 0 < κ̄ ≤ θe/θc;
those solutions can then be inserted into the original lens equation to check
whether they are actual solutions.
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The critical curves are found from (61), where now the relation θκ̄′ =
−θ2κ̄3/θ2

e can be used to replace κ̄′ there. The equation detA = 0 can then
be written in the form cos 2ϕ = f(κ̄), where f is a function of κ̄ only. Thus
for all radial coordinates θ > 0, or equivalently, for all 0 < κ̄ ≤ θe/θc one
can determine f(κ̄); a value with |f(κ̄)| ≤ 1 yields four critical points at the
radius corresponding to this mean surface mass density.

The critical curves of this special lens (“NIS plus external shear”) can be
studied analytically; because of its importance for understanding lens geom-
etry, we shall provide a detailed description of the essential features in the
following and illustrate the results in Fig. 13. First to note is that if the core
radius is too large, or the central surface mass density too low, there is no
critical curve. One finds that detA(0) = (1 − θe/θc)2 − g2

p at the center, and
can show that for xc ≡ θc/θe > (1 − gp)−1 no critical curves exist. In other
words, for κ0 = 1/xc < 1− gp the lens is not critical. Compare this condition
with the one for an unperturbed lens (gp = 0); there, in order for the lens
to become critical, κ0 must be larger than unity. If the core radius satisfies
(1 + gp)−1 < xc < (1− gp)−1, there is a single closed critical curve (see upper
left panel in Fig. 13), and the corresponding caustic has two cusps. Owing
to the shape of the caustic curve, one often calls it a lips caustic. A source
located inside the caustic has three images, whereas one outside has a single
image.

At xc = (1 + gp)−1, the Jacobian vanishes again at the origin, and for
smaller values of the core radius, xc < (1 + gp)−1, there are two critical
curves and caustics, as seen in the upper right panel of Fig. 13. A second lips
caustic is located inside the first one, oriented perpendicular to it. Sources
inside both caustics now have five images, and those inside the outer one
but outside the inner one have three. When the core radius is further de-
creased, the two critical curves approach each other at two points, and cor-
respondingly, the cusps of the inner lips caustic approach the outer caustic.
At xc = (1 − gp)1/2(1 + gp)−3/2, the critical curves and cusps merge, and
for smaller values of xc, there are again two separate critical curves and two
caustics, but now, as shown in the lower left panel of Fig. 13, one of the caus-
tics has four cusps, the other has none.7 Two of these cusps lie inside the
other caustic, the other two fall outside of it; these are called ‘naked cusps’.8

7 We have discussed folds and cusps before; one can show from singularity theory
that these are the only two ‘generic’ singularities that occur in a lens mapping.
However, if one considers a family of lens models, such as done here by varying
xc, higher-order singularities can occur. At the corresponding values of the lens
model parameter – here xc – the topology of critical curves can change. Examples
are the creation of lips singularities, or the ‘exchange of cusps’ just mentioned,
which technically speaking corresponds to a hyperbolic umbilic. Chapter of SEF
provides a general description of singularities and their metamorphoses in lens
mappings.

8 Lensing geometries where a source is located inside a naked cusp, producing
three bright images, are probably seen in clusters, indicating a relatively large
core radius for them.
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Fig. 13. Critical curves (dashed) and caustics (solid curves) for a non-singular
isothermal sphere model with external shear. Angles in the source and lens plane
have been scaled by θe, i.e., θ = θex, β = θey. In all panels, the reduced shear
is gp = 0.2. The four possible configurations are shown: for xc > (1 − gp)−1, no
critical curve exists; panel (a) shows a case with (1 + gp)−1 < xc < (1 − gp)−1, for
which a single critical curve exists, created from the previous case through a lips
catastrophe. In panel (b), the case (1−gp)1/2(1+gp)−3/2 < xc < (1+gp)−1 is shown,
for which two critical curves exist, the second one created from the previous case by
another lips catastrophe. The two corresponding caustics have two cusps each. In
panel (c), xc < (1 − gp)1/2(1 + gp)−3/2; there, one caustic with four cusps, and one
caustic without cusps occur. This case is obtained from the previous one through two
hyperbolic umbilics where the two cusps of the inner caustic in (b) were transferred
to the outer caustic; correspondingly, at that point the two critical curves intersect
on the x1-axis in this transition. Finally, panel (d) shows the same case as panel (c),
except that now the two ‘naked cusps’ – the cusps outside the other caustic – are
inside the other caustic. In addition, in all panels we have positioned three sources,
indicated by the filled triangle, the filled square and the filled hexagon, together with
their corresponding images, shown with the corresponding open symbols
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The caustic with the cusps, also called the astroid or tangential caustic, cor-
responds to the outer critical curve, the one without cusp to the inner or
radial critical curve. Decreasing xc further, the inner critical curve decreases
in size, whereas the corresponding caustic increases and finally completely
encompasses the astroid caustic (Fig. 13, lower right panel).

In the figure, we have also illustrated the image locations (open symbols)
for several source positions (filled symbols). As will be discussed in SL (Part 2),
many of these image configurations have actually been observed. For galaxy
lensing, configurations of the type shown in the lower right panel are most
relevant since galaxies seem to have a small core radius. In that case, one of
the images is located very close to the center of the lens where κ is much
larger than unity, and therefore the magnification is very small – which is the
canonical explanation for the absence of an observed odd image. Furthermore
we see that in this case, the characteristic maximum image separation is Δθ ∼
2θe, as expected. A source close to and inside a cusp produces three (highly
magnified) images lying close together near the corresponding critical curve;
in the case of a naked cusp, these are the only images of the source, whereas
if the cusp lies inside the other caustic, two additional images are formed (one
of which may be highly demagnified).

If the core radius is decreased to zero, the inner critical curve shrinks
to zero size, the corresponding caustic becomes a circle with radius θe, and
the number of images changes by ±1 when a source crosses this curve – the
behavior is identical to the one already encountered in the discussion of the
SIS model. The other critical curve attains a simple parametric form,

cos(2ϕ) =
1 −

(
1 − g2

p

)
x

gp
⇐⇒ x =

1 − gp cos(2ϕ)
1 − g2

p

, (63)

describing a single closed curve around the origin, which is in fact an ellipse.
By inserting this parameterized form into the lens equation and eliminating
the parameter ϕ results in the equation describing the astroid caustic,

[

2y2
1

(
1 + gp
gp

)2
]1/3

+

[

2y2
2

(
1 − gp
gp

)2
]1/3

= 2 , (64)

from which the locations of the cusps can be read off. In particular, (64) shows
that the size of the astroid caustic increases with increasing gp and, to first
order, its linear size is ∝ gp.

In the limit gp → 0, the two critical curves become circles, with the outer
(inner) one being the tangential (radial) critical curves. Because of that, one
often uses the same names for the critical curves also in the perturbed case
gp 
= 0. The radial caustic then separates the three-image region from the
single-image region in the source plane, and the tangential caustic degenerates
into a single point. The fact that this point unfolds in the presence of a
perturbation is nicely illustrated by (64).
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General Discussion of ‘Elliptical’ Lenses

Mass distributions with elliptical isodensity contours are needed to realisti-
cally model gravitational lens systems. Although such models are considerably
more difficult to handle analytically, their qualitative properties are similar
to the NIS with external shear that was discussed above. In particular, the
evolution of the critical curves and the caustics as a function of ‘lens strength’
or ‘core size’ for these models is the same as that shown in Fig. 13; the same
is true for the properties regarding multiple imaging. Of course that does not
mean that the choice of the lens model is arbitrary: for systems with suffi-
ciently detailed observational constraints, a quantitative modeling technique
can distinguish between the various classes of models; as we shall see in SL
(Part 2), the NIS with external shear is often too simple; many lens systems
require an elliptical mass distribution plus some external shear in addition.

4 The Cosmological Standard Model I:
The Homogeneous Universe

We assume that the reader is familiar with the basic concepts of standard
cosmology, such as the hot Big Bang occurring some 13.7 billion years ago,
after which the Universes expanded and cooled down. During this expan-
sion, the simplest atomic nuclei, predominantly helium, were formed about
a minute after the Big Bang, and some 370,000 years later, the Universe
became neutral and released a thermal radiation that is still visible today,
the Cosmic Microwave Background radiation with a temperature of 2.73K.
In addition, it is assumed that you are aware of the existence of dark matter,
material that reveals itself only through gravity, like in governing the rotation
curves of the Milky Way and other spiral galaxies or in providing the deep
potential wells of clusters of galaxies which can keep very hot X-ray emit-
ting plasma and fastly moving galaxies gravitationally bound. Therefore, we
shall only briefly summarize those relations which will be used later in this
course. Excellent textbooks on cosmology are available, among them are Kolb
and Turner (1990), Peacock (1999), Padmanabhan (1993), Peebles (1993) and
Liddle and Lyth (2000).

4.1 The Cosmic Expansion

Metric and Coordinates

Observational evidence suggests that the Universe around us, when averaged
over large angles, is isotropic (the Cosmic Microwave Background, or CMB;
the faint galaxy distribution, etc.). Furthermore, if we assume that our
location in the Universe is not special, the same property also holds for other
observers: also for them the Universe should appear isotropic when averaged
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over large scales. Together, this implies that the Universe is spatially homo-
geneous and isotropic around every point. It has been shown by Robertson
and Walker that for such a spacetime, the metric can be written in the form

ds2 = c2 dt2 − a2(t)
[
dw2 + f2

K(w)
(
dθ2 + sin2 θ dϕ2

)]
, (65)

where t is the cosmic time [which agrees with the time measured by comoving
observers, i.e., those with constant (w, θ, ϕ)], a(t) the cosmic scale factor,
normalized so that today, a(t0) = 1, w the comoving radial coordinate, θ
and ϕ are the angular coordinates on a unit sphere, and fK(w) the comoving
angular diameter distance, which depends on the curvature parameter K in
the following way:

fK(w) = |K|−1/2 sinh
(
|K|1/2w

)

≡

⎧
⎨

⎩

K−1/2 sin(K1/2w) (K > 0)
w (K = 0)
(−K)−1/2 sinh[(−K)1/2w] (K < 0)

. (66)

Hence, (w, θ, ϕ) are spherical coordinates in a three-dimensional space of con-
stant curvature K. Radiation from a comoving source emitted at time t2 and
received by a comoving observer at time t1 > t2 is redshifted by a factor
1 + z12 = a(t1)/a(t2).

Expansion Equation

Inserting the metric (65) into Einstein field equation of General Relativity
shows that the matter contents must be that of a (homogeneous) perfect fluid
with density ρ(t) and pressure p(t). The components of the field equation
reduce to two independent dynamical equations for the scale factor a(t),

(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+
Λ

3
(67)

and
ä

a
= −4

3
πG

(
ρ+

3p
c2

)
+
Λ

3
. (68)

Equation (67) is called Friedmann equation (Friedmann 1922). The two equa-
tions (67) and (68) can be combined to yield the adiabatic equation

d
dt
[
a3(t)ρ(t)c2

]
+ p(t)

da3(t)
dt

= 0 , (69)

which has the following intuitive interpretation: the first term a3ρ is propor-
tional to the energy contained in a fixed comoving volume, and hence the
equation states that the change in ‘internal’ energy equals the pressure times
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the change in proper volume. Hence, (69) expresses the first law of thermo-
dynamics in the cosmological context. The parameter Λ in (67) and (68) is
the cosmological constant; Einstein introduced it into his field equation (in
1916) because without it, no static model of the Universe would be predicted
by General Relativity – the Hubble expansion of the Universe was discovered
only a decade later, after which Einstein dismissed this term. In recent years,
the cosmological constant has regained great popularity – because, as will be
discussed later, there is strong evidence in favor of Λ 
= 0. On the other hand,
the interpretation of Λ has also changed, as we shall see.

World models for which the metric is given by (65) and where the scale
factor a(t) obeys Friedmann equation (67) and the adiabatic equation (69)
are called Friedmann–Lemâıtre models. It should be noted that (68) can also
be derived from Newtonian gravity except for the pressure term and the cos-
mological constant. Unlike in Newtonian theory, pressure acts as a source of
gravity in General Relativity.

Matter Models

By themselves, these equations do not specify the expansion history a(t); for
this we have to add an equation of state (EOS). In general, matter components
cannot be described by a simple equation of the form p = p(ρ); however, for
some limiting cases an equation of this form does exist. Fortunately, the matter
contents in our Universe seems to be such that over most of its history it can
be described by a few components, each of which having such a simple EOS.

If the constituents of matter have random (thermal) velocities much
smaller than c, p � ρc2, then the pressure of this component can be ne-
glected in the expansion equation; this kind of matter is approximated by
p = 0 and called ‘dust’ (or simply ‘matter’). For p = 0, (69) yields that

ρm ∝ a−3 , (70)

a result that is intuitively clear: as the physical (or proper) volume of a fixed
comoving volume behaves like V ∝ a3, and the number of matter particles
is conserved, their number density, and thus mass density must decrease as
ρ ∝ V −1 ∝ a−3.

In the other limiting case, where the constituents of matter have a random
velocity close to c (or even c, as must be the case for massless particles, like
photons), one has p = ρc2/3. For obvious reasons, matter with this EOS is
called ‘radiation’. From (69) one then finds that the energy density of radiation
evolves as

ρr ∝ a−4 , (71)

a result that can also be easily understood. Whereas the number density
of photons (assuming that they constitute the ‘radiation’) decreases as a−3,
again due to number conservation, their individual energy decreases as a−1,
owing to the redshift of their energy (or adiabatic decompression).
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Finally, there may be a mass component which can be interpreted as the
energy density of the vacuum, assumed to be a constant in time. If the den-
sity is independent of a, then (69) predicts that pv = −ρvc

2 for this matter
component.

The matter density and pressure of the Universe is then given by the sum
of these three components,

ρ = ρm + ρr + ρv =
ρm0

a3
+
ρr0

a4
+ ρv , p =

ρrc
2

3
− ρvc

2 =
ρr0c

2

3a4
− ρvc

2 , (72)

where the additional index ‘0’ indicates that these are the values at present
time. Inserting these expressions into (67) and (68) (setting Λ = 0 in these
equations) shows that a term of the same form as the Λ-term appears; the
cosmological constant can therefore be interpreted as a vacuum energy density.

Cosmological Parameters

The ratio
H(t) = ȧ a−1 (73)

is the expansion rate of the Universe, and its current value H0 is called Hubble
constant. This is the ratio of recession velocity to the distance of objects in
the nearby Universe, and has the value

H0 ≈ 3.2 × 10−18 h s−1 ≈ 1.0 × 10−10 h yr−1 , (74)

where h parameterizes our lack of knowledge on the exact value of H0; the
currently best estimates yield h ≈ 0.72 (see Sect. 6.3). If Λ = 0 and the spatial
curvature vanishes, K = 0, then the current density of the Universe is directly
related to H0, as seen from (67); this density is called critical density,

ρcr :=
3H2

0

8πG
≈ 1.9 × 10−29 h2 g cm−3 . (75)

This characteristic density is used to scale the matter densities by defining
the density parameters

Ωm :=
ρm0

ρcr
; Ωr :=

ρr0

ρcr
; ΩΛ :=

ρv

ρcr
=

Λ

3H2
0

. (76)

The radiation density in the Universe is fairly well known: it is dominated
by the energy density of the cosmic microwave background (CMB) which has
a Planck spectrum with temperature of TCMB ≈ 2.73K and whose energy
density can be calculated from the Stefan–Boltzmann law to be

ρCMB =
1
c2

π2

15
(kTCMB)4

(h̄c)3
≈ 4.5 × 10−34 g cm−3 → ΩCMB = 2.4 × 10−5 h−2 .

(77)
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In addition, from the era just before the primordial nucleosynthesis took place,
there is a relic background of neutrinos, at a temperature corresponding to
Tν = (4/11)1/3TCMB ≈ 1.95K; their number density today is 113 cm−3 per
species. If neutrinos were massless, they would contribute to the radiation
density, and with three neutrino families one would have Ωr ≈ 1.68ΩCMB. If
neutrinos have a small, but finite rest mass above ∼ 10−4 eV they would be
non-relativistic today, and contribute to the matter density instead. However,
at earlier epochs the neutrinos were relativistic and therefore contributed to
the radiation energy density. In any case, for the present epoch we can com-
pletely neglect the influence of the radiation on the expansion rate. This, of
course, was not always the case; since the radiation density drops as a−4,
whereas the matter density only as a−3, there was an epoch (or a scale factor)
when both were equal, namely at

aeq =
Ωr

Ωm
= 3.2 × 10−5Ω−1

m h−2 , (78)

and we used Ωr ≈ 1.68ΩCMB here, since at aeq, the neutrinos were relativis-
tic. For scale factors a <∼ aeq, radiation was the dominant component in the
Universe.

Making use of (72) and the definitions (76) of the density parameters, the
expansion equation (67) becomes

H2 = H2
0

[
Ωr

a4
+
Ωm

a3
− Kc2

a2 H2
0

+ΩΛ

]
. (79)

Specializing this to the current epoch, a = 1, yields an expression for the
curvature, K = (Ωm + ΩΛ − 1)H2

0/c
2 (where we used Ωr � Ωm), which can

be inserted into (80) to yield

H2 = H2
0

[
Ωra

−4 +Ωma
−3 + (1 −Ω0)a−2 +ΩΛ

]
, (80)

where we defined
Ω0 = Ωm +ΩΛ +Ωr (81)

as the total density parameter of the present-day Universe. One sees that the
sign ofΩ0−1 agrees with that ofK, so that the total matter density determines
the spatial curvature of the Universe. Note that (80) is a first-order differential
equation for a(t), which can be integrated (numerically, if necessary) with
the boundary condition a(t0) = 1. The general discussion of the qualitative
behavior of a(t) (see, e.g., Peacock 1999, Sect. 3.2; also Fig. 19 below) yields the
following results: The scale factor a(t) is a monotonically increasing function
for a < 1; hence, a decreases monotonically as we go backwards in time.
Whereas in principle it is possible that a does not decrease below a finite
positive value (so-called bouncing Universes), we happen not to live in one
– such models predict a minimum a, and therefore a maximum redshift; the
fact that we have discovered sources at redshift z >∼ 6, coupled with a matter
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density that certainly exceeds Ωm > 0.05 excludes the possibility that our
Universe is of that kind. Hence, formally a → 0 as we go into the past, at a
finite instant. This instant is called the Big Bang, an event when the Universe
was extremely dense and hot. The behavior of a(t) in the future depends on
the values of the density parameters. If ΩΛ = 0, then a(t) will continue to
grow provided Ωm ≤ 1, otherwise it will reach a maximum value of a and
then recollapse. If ΩΛ > 0, the threshold value of Ωm for recollapse is slightly
changed. Flat models, i.e., those with Ωm +ΩΛ = 1 expand forever provided
Ωm ≤ 1. Defining t = 0 to be the instant of the Big Bang when a = 0, the
cosmic time as a function of scale factor can be calculated from (80), since
dt = da ȧ−1 = da(aH)−1; ignoring Ωr (which is important only over a very
brief period at the beginning of the expansion), one has

t(a) =
1
H0

∫ a

0

da′
[
a′−1Ωm + (1 −Ωm −ΩΛ) + a′2ΩΛ

]−1/2
; (82)

in particular, t0 is obtained by setting a = 1. Apart from a numerical factor
which depends on the density parameters, this yields t0 ∼ H−1

0 . Equation
(82) can be inverted to yield a(t).

Light propagates along null geodesics; in the coordinate system used to
define the metric (65), it is easy to show from symmetry arguments that
radial null curves (i.e., those with θ = const., ϕ = const.) are geodesics; for
them cdt = −adw, if we choose our location at w = 0. The minus sign
occurs since photons propagating to us have dt > 0 but dw < 0. Light from a
source that we observe today was emitted at a time obtained from integrating
cdt = −adw; every observation of the distant Universe is inevitably a look
into the past.

We therefore have a number of variables which can be used to describe the
location of a source: its comoving distance w, the time t at which the light
was emitted which we observe today from that source, the scale factor a at
this time or, equivalently, the redshift z = a−1−1, and the temperature of the
Universe (which is defined as the temperature of the microwave background
radiation – note that cosmic expansion evolves a blackbody into a blackbody,
with temperature T ∝ a−1). These variables are related to each other by

dt =
da
ȧ

=
da
aH

; −dw =
cdt
a

=
cda
a ȧ

=
cda
a2H

. (83)

4.2 Distances and Volumes

The Meaning of Distance

Which of these descriptions of the location of a source is the ‘correct distance’?
Well, wrong question. This question is based on the Euclidean preconception
that there is a uniquely defined correct distance, and that this is the outcome
of all (correct) methods to measure the distance. However, in a general space-
time, two complications occur. The harmless one is that space may be curved.
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The more important one is that any observation measures distances not at a
given instant of time, but along the backward light cone, and distances change
in time as the Universe expands. There is not a unique meaning of distance.
Nevertheless, one can construct methods on how to measure distance, and
define distances according to these measurement procedures. The two most
important definitions of distance are described next.

Distance Measures

Suppose one knows the physical diameter 2R of a source at redshift z (or scale
factor a) which is observed to have an angular diameter of δ. In Euclidean
space one would then measure the distance to this source to be D = 2R/δ;
accordingly, one defines the angular diameter distance as exactly this ratio,

Dang(z) = 2R/δ = a(z) fK(w) , (84)

where the final expression follows from the metric by setting δ = dθ and
ds = 2R. In the foregoing expression, w is to be understood as a function of
redshift; the corresponding relation can be obtained from (83) to be

w(z1, z2) =
c

H0

∫ a(z1)

a(z2)

[
aΩm + a2(1 −Ωm −ΩΛ) + a4ΩΛ

]−1/2
da

= w(z2) − w(z1) , (85)

which is the comoving distance between two sources that we see to have red-
shifts z1 < z2, and we set w(z) ≡ w(0, z). The comoving distance can be
interpreted as the spatial distance between the intersections of the world-
line of these two comoving sources with the spatial hypersurface t = t0 (cf.
the definition of comoving coordinates). Generalizing (84), we can define the
angular-diameter distance Dang(z1, z2) of a source at redshift z2 seen by an
observer at redshift z1 < z2 as

Dang(z1, z2) = a(z2) fK [w(z1, z2)] . (86)

Note that in general, Dang(z1, z2) 
= Dang(z2) −Dang(z1); on the other hand,
such an additive relation is valid for the comoving angular diameter distances
for a Universe with vanishing curvature K = 0, as seen from (85) and (66).
Thus, it is often useful to employ the comoving angular diameter distance,
i.e., the ratio between the comoving diameter of an object and its angular
diameter.

Another method to measure distances is to relate the observed flux S of
a source to its luminosity L; if we know the luminosity, then the distance to
the source can be determined by

Dlum(z) ≡
√

L

4πS
, (87)
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which is called the luminosity distance. In Euclidean space, this measurement
would yield the same result as that from comparing diameters and angu-
lar sizes; in curved spacetimes, this is no longer true. In fact, one can show
(Etherington 1933) that in general,

Dlum(z) = (1 + z)2 Dang(z) = (1 + z) fK(w) . (88)

In this equation, flux and luminosity have to be interpreted as bolometric
quantities, i.e., integrated over all frequencies. The flux at a given frequency ν
is related to the specific luminosity of the source at a different frequency νe =
(1 + z)ν, owing to redshift. This frequency shift is taken into account by the
so-called K-correction in the relation between specific flux and luminosity.

We still need another distance concept, the proper distance. Suppose we
measure the redshifts z and z + Δz of two comoving sources, being very
similar, and which also have small angular separation Δθ on the sky. What is
the separation between these two sources that an observer would measure who
lives somewhere near them? This separation can be measured by this fiducial
observer in the same way as we can measure the distance to Virgo-cluster
galaxies, without caring about the values of the cosmological parameters –
locally space can be approximated as being Euclidean where distances have
a unique meaning. The proper separation transverse to the line-of-sight is
Dang(z)Δθ, and that along the line-of-sight is

Δrprop = a(z)Δw = a(z)
dw
da

da
dz

Δz =
c a(z)
H(z)

Δz

=
c

H0

Δz
√
Ωma−1 + (1 −Ωm −ΩΛ) +ΩΛa2

. (89)

Volume Elements

We can now also calculate volume elements: suppose in a solid angle ω one
measures dN sources with redshift between z and z + dz, the proper number
density of these sources is n = dN/dV , where the volume is given by the
physical thickness of the redshift slice times the area transverse to the line-
of-sight, which is D2

ang(z)ω, so

dVprop = D2
ang(z)ω

drprop

dz
dz , (90)

where we indicated that this is the proper volume element. The corresponding
comoving volume element is then

dVcom = a−3 dVprop = f2
K [w(z)]ω

dw
dz

dz . (91)

Finite volumes can be obtained from the foregoing equations by integration.
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Special Cases

Whereas the foregoing expansion equations are easily evaluated through nu-
merical integration, there are some cases where explicit expressions can be
obtained. The simplest model is the Einstein–de Sitter (EdS) Universe, char-
acterized by Ωm = 1, ΩΛ = 0; this model has zero curvature. The ex-
pansion equation (neglecting radiation) reduces to H = H0a

−3/2, yielding
t = 2/(3H0)a3/2; in particular, the current age of the Universe in this model
is t0 = 2/(3H0) ∼ 6.7 × 109 h−1 years. The comoving and angular diameter
distance for an EdS model are easily obtained as

Dang(z1, z2) =
2c
H0

1
1 + z2

[
(1 + z1)−1/2 − (1 + z2)−1/2

]
,

Dcom(z1, z2) =
2c
H0

[
(1 + z1)−1/2 − (1 + z2)−1/2

]
. (92)

In particular, as for all flat models, the comoving angular diameter distance
is the same as the comoving distance. Unfortunately, we seem to not be living
in an EdS Universe (see Sect. 6.3).

For models without a cosmological constant, the angular-diameter distance
can be written in closed from, using the famous Mattig (1958) relation,

Dang(z1, z2) =
2

Ω2
m(1 + z1)(1 + z2)2

×
[
(Ωmz2 −Ωm + 2)

√
1 +Ωmz1 − (Ωmz1 −Ωm + 2)

√
1 +Ωmz2

]
.(93)

Next we consider the expansion equation (80) qualitatively. The different
dependencies of the four terms in (80) on the scale factor shows that for
very small a, the expansion was dominated by radiation, for a >∼ aeq it was
dominated by matter; the effects of curvature (if different from zero) and the
cosmological constant play a role only at later stages of the cosmic expansion.
For small a � 1, (80) can be approximated as H = H0Ω

1/2
m a−3/2

√
1 + aeq/a

which can be integrated to yield

t(a) =
2

3H0
Ω−1/2

m

[
a3/2

(
1 − 2

aeq

a

) (
1 +

aeq

a

)1/2

+ 2 a3/2
eq

]
, (94)

and so t = a2
(
2H0

√
Ωmaeq

)−1
for a � aeq, and t = 2a3/2

(
3H0

√
Ωm

)−1 for
aeq � a � 1. For EdS, (94) describes the expansion for all a through the
radiation and matter dominated phases.

4.3 Gravitational Lensing in Cosmology

The Meaning of Distance in Lensing

When we used distances to write the gravitational lens equations in Sect. 2
we have not discussed what ‘distance’ means there. Now we learned that the
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concept of distance in curved spacetimes, even if they are as simple as the
Friedmann–Lemâıtre spacetimes, are more complicated than in the Euclidean
case. Therefore, which of the many distances defined above is the one to be
used in the gravitational lens equations?

The answer is quite obvious: recall that the basic lens equation (6) relates
images and source positions by a geometrical consideration; for that one needs
to relate angles with transverse distances. This is exactly the way the angular-
diameter distance was defined; hence, all equations in Sect. 2 are also valid
in a Friedmann–Lemâıtre spacetime if the distances D are taken to be the
angular-diameter distances Dang.

In many cases, the equations of gravitational lensing become simpler if
the comoving angular diameter distances fK(w) are used; one example is the
expression (96) for the time delay. In particular this is true for flat cosmological
models, for which fK(w) = w. Furthermore, most equations of gravitational
lensing contain distances only in form of the ratio Dds/Ds, for which it is
irrelevant whether D = Dang or D = fK is used. In order not to confuse the
reader, we shall consistently use the following convention throughout the rest
of this book (recalling that in all equations in Sects. 2 and 3, D ≡ Dang is
implied): the angular diameter distance is denoted by Dang, and the comoving
distance is denoted by D or fK . For example, in this notation the critical
surface mass density and the Einstein radius of a point mass read

Σcr =
c2

4πG
Dang

s

Dang
d Dang

ds

=
c2(1 + zd)

4πG
Ds

DD Dds

θE =
(

4GM(1 + zd)
c2

Dds

DDDs

)1/2

. (95)

The Time Delay

We mentioned in Sect. 2.2 that the light travel times along the light rays that
form the multiple images in a lens system are not the same, but have not
given an expression for it. Now that we are armed with the necessary cos-
mological relations we can do so. There are two ways to derive an expression
for the time delay, both of which shall briefly be described here. Cooke and
Kantowski (1975) argued that the time delay must have two different compo-
nents: first, a light ray that is bent is longer, and thus light needs more time to
propagate along it, than for a straight ray. Since the individual light rays are
bent by different angles, their geometrical lengths are different, giving rise to a
‘geometrical time delay’ between them. Second, light rays propagate through
a gravitational potential which retards them; this is the well-known ‘Shapiro
effect’, which has been amply tested by radar echo delay experiments towards
the inner satellites in the Solar System. This is the ‘gravitational time delay’.
The total time delay is then simply the sum of the two. For this derivation, it
is important to note that the gravitational time delay ‘occurs’ at the redshift
of the lens, and hence gets redshifted by a factor 1 + zd owing to the cosmic
expansion.
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An alternative derivation of the time delay was given by Refsdal and his
collaborators (see e.g. Kayser and Refsdal 1983 and references therein); they
considered the wavefronts emitted from a source. Wavefronts are surfaces of
equal light travel time (image for example a set of photons all emitted in
a single flash from a bursting source; their location at fixed instant form
a wavefront), and Fermat principle states that light rays are perpendicular
to the wavefronts. Close to the source, the wavefronts are spheres; owing to
perturbations in the gravitational potential, they get distorted. If propagating
near a mass concentration, the wavefronts can become strongly distorted, and
after passing it, they can actually intersect themselves. An observer located
in that region would then be passed by the same folded wavefront more than
once; since the different sheets of the wavefronts have different orientations,
the observer will then see multiple images of the corresponding source, in the
direction perpendicular to the individual wavefront sheets. The time delay
between two images is then obtained as the time between the passing of the
two corresponding wavefront sheets. From a purely geometrical consideration,
the time delay can then be derived, yielding the same expression as adding
together the geometrical and potential time delays of the first method.9 The
time delay can be written most conveniently in terms of the Fermat potential
as (Schneider 1985)

Δt =
Dang

D Dang
s

cDang
ds

(1 + zd)
[
τ(θ(1);β) − τ(θ(2);β)

]

=
DDDs

cDds

[
τ(θ(1);β) − τ(θ(2);β)

]
, (96)

where in the second expression the comoving angular diameter distances were
used, and τ(θ;β) is the Fermat potential defined in (14). This result then
confirms the statement made in Sect. 2.2: τ(θ;β) is, up to an affine trans-
formation, the light travel time along a ray originating at β in the source
plane, traversing the lens plane at θ and then propagating to the observer.
The additive constant of this affine transformation is irrelevant, as only differ-
ences are observable; the factor in the linear term is given in (96). The poten-
tial time delay is described by the deflection potential ψ(θ) in τ , the geometric
time delay by the |β − θ|2/2 = |α|2/2-term.

5 Basics of Lensing Statistics

One is frequently interested in the probability that a specific gravitational
lensing event occurs. For example, Zwicky (1937b) estimated the probability
that a distant source is multiply imaged by “extragalactic nebulae” using the
9 As Sjur Refsdal reports, the first referee of his paper on the wavefront method

rejected it wholeheartedly, claiming that the resulting expression can contain
only the geometrical contribution to the time delay. It remains unknown how this
referee imagined the geometry of distorted and overlapping wavefronts without
the effect of retardation provided by the gravitational field of the deflector.
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surface density of these objects on the sky. This basic problem of statistical
gravitational lensing has since been studied in considerable detail, as will be
discussed in SL (Part 2). The results of such an investigation depend on the
assumed distribution of lens masses and their individual density profiles. A
comparison of these results with a statistically well defined sample of observed
lens cases can in principle allow one to constrain the lens contents and/or the
geometry of the Universe. The probability for microlensing events to occur
depends on the density of compact objects along the sightline to the popula-
tion of sources which are monitored, as will be detailed in ML.

Another typical problem of statistical lensing is the so-called magnification
bias. Let us consider a sample which should include all sources of a certain
kind in a region of the sky brighter than a given threshold (i.e., a flux-limited
sample). From the observed fluxes of the sources and their distances (e.g.,
determined from their redshifts) we can derive the intrinsic luminosities of the
sources. If a source is magnified by a gravitational lens, its derived luminosity
will not be the true one, but will be higher in general. Moreover, there may
be sources in the sample which do not belong there because they are intrin-
sically too faint to be included, but have been magnified above the threshold
of the sample. Since flux-limited samples of extragalactic sources are used to
derive information about the evolution of the sources and about the structure
of the universe, the magnification can mislead astronomers. Statistical lens-
ing investigations are used to estimate the importance of this effect and its
consequences. In this section we shall provide the basics of lensing probability
investigations, with details left to later sections when specific applications are
discussed.

5.1 Cross-Sections

The lensing probabilities depend on the number density of lenses, as well as
on their mass profile. The latter is used to define lensing cross-sections. We
shall start with two specific examples which should motivate this concept.

Cross-Sections for a Point-Mass Lens

First, consider a (point) source at distance Ds, and a point mass at distance
DD from Earth. The separation of the two images and their magnifications
depend on the relative alignment of source, observer, and lens. There is a one-
to-one relationship between the source position β = yθE and the corresponding
total magnification μp, see (48), where total magnification means the summed
magnifications of the individual images. Thus, for any μp > 1 there is a value
of y such that, if the distance β of the source is less than yθE from the optical
axis, the latter is magnified by more than μp:

y2 = 2

⎛

⎝ μp√
μ2

p − 1
− 1

⎞

⎠ . (97)
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Hence, we can define the cross-section

σ(μp) = πθ2
E y

2(μp) (98)

for a point source magnification larger than μp. In other words, centered on
the caustic point there is a solid angle σ(μp) within which the source must
lie in order to be magnified by more than μp. One could also consider σ to
be the solid angle in which a lens must be located such that a fixed source is
magnified by more than μp; these two points of view are basically equivalent,
though there are some subtleties involved (Ehlers and Schneider 1986) which
shall not be discussed here.

As a second example, we consider the ratio r = μ+/|μ−| of the absolute
values of the magnifications (brightness ratio) for the two images produced
by a Schwarzschild lens – see (48). In order for this ratio to be less than r, the
impact parameter y needs to be less than r1/4−r−1/4, and so the cross-section
for magnification ratio less than r > 1 is

σ(r) = πθ2
E

(
r1/2 + r−1/2 − 2

)
. (99)

General Definition of a Lensing Cross-Section

After these two examples we now discuss the general definition of a cross-
section. Consider a source and a lens, both at fixed distances from Earth. The
lens may be described by a set of parameters, and the source is characterized,
say, by its size and its brightness profile (if the source extent is relevant). If
one is interested in a certain property Q of this gravitational lens system,
one can ask where the source must be located such that the images have the
property Q. Two examples for Q were given above, namely, that the total
magnification is larger than μ and that the brightness ratio of the images
is smaller than r. More complicated examples of Q will be considered in due
course. The question can be answered through an analysis of the gravitational
lens model, as demonstrated above for the point mass lens. One usually finds
that the source must be in a certain region of the source plane. The solid angle
of that region is then the Q-cross-section σQ for this lens–source system.

Lensing Cross-Section for a Singular Isothermal Sphere

To illustrate the concept further, we shall consider the lensing cross-sections of
an SIS. From Sect. 3.3 we know that this lens produces two images if β < θE,
and that the image separation is 2θE. Hence, the cross-section of an SIS to
produce two images with separation larger than Δθ is

σ(Δθ) = πθ2
EH(2θE −Δθ) , (100)

where H(x) is the Heaviside step function. Next the (total) magnification and
the flux ratio r can be included; both are functions of y = β/θE, μ = 2/y and
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r = (1 + y)/(1 − y). Therefore, the cross-section for an SIS to produce two
images with separation larger than Δθ, total magnification larger than μ and
flux ratio of the images smaller than r is

σ(Δθ, r, μ) = πθ2
E

[
min

(
r − 1
r + 1

,
2
μ

)]2
H(2θE −Δθ)H(μ− 2) . (101)

The Mass-Sheet Degeneracy and Scaling of Cross-Sections

In Sect. 2.5 we have seen that the imaging properties, such as angular sepa-
ration and magnification ratios – and thus flux ratios, are unchanged if the
surface mass density is transformed according to (28). As can be seen from
(31), this transformation merely leads to a scaling of the lens plane, thereby
affecting the magnifications. The scaling of the lens plane implies that the
cross-section for an extended source of size ρ will, after the mass-sheet trans-
formation, be related to the cross-section for a source of size λρ. Hence, the
cross-section for flux ratio smaller than r, image separation larger than Δθ,
magnification larger than μ for a source of size ρ transforms like

σλ(r,Δθ, μ, ρ) = λ2σ
(
r,Δθ, λ2μ,

ρ

λ

)
. (102)

5.2 Lensing Probabilities; Optical Depth

The probability that a lensing event with specified properties Q occurs is
given by the product of the number density of lenses and their cross-sections.
Consider a solid angle ω toward sources at distanceDs. To the distance interval
dx around x (note that we use a different notation for distance along the
line-of-sight here, for reasons which soon will become clear) corresponds a
proper volume element dV = D2

ang(x) (drprop/dx) ω within this solid angle.
We consider lenses which are described by a set of parameters, summarized as
χ; such parameters could be lens mass, core radius, ellipticity, etc. If n(x, χ) dχ
is the (proper) number density of lenses at distance x with properties within
dχ of χ, the total cross-section of all lenses within the tube of solid angle ω
is then

σtot(Q) =
∫ xs

0

dx ωD2
ang(x)

drprop

dx

∫
dχ n(x, χ)σ(Q;x, xs, χ) , (103)

where the Q-cross-section of a lens depends on the lens parameters χ, the
distance parameter x along the line-of-sight, and the source distance xs. The
picture underlying this equation is that the cross-sections of the individual
lenses simply add up linearly. This picture is justified as long as the pro-
jected separation between lenses is much larger than the linear size of the
cross-sections, or in other words, the cross-sections of individual lenses do not
overlap. The probability for a lensing event with property Q – also frequently



58 P. Schneider

called optical depth for lensing – is then given by the ratio of the cross-section
σtot(Q) and the solid angle ω, i.e., the fraction of solid angle covered by the
cross-sections,

P (Q) =
∫ xs

0

dx D2
ang(x)

drprop

dx

∫
dχ n(x, χ)σ(Q;x, xs, χ) . (104)

We shall now consider the case where the distance to the source is small, so
that cosmological distances play no role. In this case, we can take x = DD,
and (104) becomes

P (Q) =
∫ Ds

0

dDD D2
D

∫
dχ n(DD, χ)σ(Q;DD,Ds, χ) . (105)

In the other case, where the sources of interest are at cosmological distances,
redshift is a convenient distance variable, and (104) reads

P (Q) =
∫ zs

0

dzd D2
ang(zd)

drprop

dz

∫
dχ n(zd, χ)σ(Q; zd, zs, χ) , (106)

where the proper distance interval along the line-of-sight is given in (89). In
this cosmological context, it is often useful to specify the comoving number
density ncom of lenses, instead of the proper density n; both are related by
n(z) = (1 + z)3 ncom; furthermore, we can use the comoving distance w as
integration variable, and work in terms of the comoving angular diameter
distance fK(w); then, (106) becomes

P (Q) =
∫ ws

0

dw f2
K(w)

∫
dχ ncom(w,χ)σ(Q;w,ws, χ) , (107)

which is particularly convenient in the case of flat models (fK(w) = w).

5.3 Magnification Bias

Besides the optical depth for a source to be multiply imaged (with image
separation larger than an angular resolution limit of a survey), the magnifi-
cation probability distribution has received great attention in the literature.
Questions that have been studied include:

• Can all bright quasars be merely highly magnified images of much less
luminous Seyfert galaxies (Barnothy 1965)? No, the lensing probabilities
are far too small (e.g., Tyson 1981; Peacock 1982), even if the dark matter
in the Universe consists of compact objects (Canizares 1982; Schneider
1987).

• Can magnification by (compact objects in the) halos of galaxies explain
the apparent angular correlation (e.g., Arp 1987, and references therein)
between nearby bright galaxies and high-redshift quasars? Again no, mag-
nification probabilities are far too small (e.g., Canizares 1981; Vietri and
Ostriker 1983; Schneider 1992).
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• Does magnification affect the expected number of multiply-imaged QSOs
in a gravitational lens survey? Yes (e.g., Wallington and Narayan 1993):
for a lens survey with a bright flux threshold, magnification boosts the
fraction of lensed sources by a large factor (see SL Part 2).

Magnification can cause sources to be included in a flux-limited sample which
without lensing would be too faint to be included. Furthermore, sources with
a very large magnification factor can attain apparent luminosities which ex-
ceed the maximum luminosities of the corresponding class of sources. In fact,
several of the most luminosity-extreme sources are strongly magnified: The
apparently most luminous IRAS galaxy F10214+4724 is magnified by a galaxy
by about a factor of μ ∼ 50 (Broadhurst and Lehár 1995), the most luminous
‘normal’ Lyman-break galaxy cB58 (Yee et al. 1996) at redshift z = 2.72 is
magnified by the cluster MS1512+36 with redshift z ∼ 0.3 by a factor μ ∼ 30
(Seitz et al. 1998), the very bright z = 3.87 QSO APM 08279+5255 (Irwin
et al. 1998) is gravitationally lensed and highly magnified by a foreground
galaxy (Ibata et al. 1999), and several of the highest redshift galaxies have
been found behind lensing clusters (e.g., Hu et al. 2002; Kneib et al. 2004;
Pelló et al. 2004).

Consider a class of sources in a narrow redshift interval, and denote by
p(μ) dμ the probability that one of these sources is magnified by a factor within
dμ of μ. Let N0(> S) be the number of these sources per unit solid angle that
without lensing would be observed to have flux greater than S. If these sources
get magnified by a factor μ, two things happen: first, a source with unlensed
flux S will attain an observed flux μS. Second, since magnification enlarges the
solid angle, sources that without lensing would be contained in a solid angle
ω on the sky, will now be spread over the solid angle μω, i.e., the number
density of sources decreases by a factor 1/μ. Together, if the magnification
would be (locally) a constant μ, the observed source counts are

N(> S) =
1
μ
N0

(
>
S

μ

)
. (108)

Considering a probability distribution p(μ) in magnifications, this result gen-
eralizes to

N(> S) =
1
〈μ〉

∫
dμ p(μ)N0

(
>
S

μ

)
, (109)

where 〈μ〉 is the mean magnification within the region of the sky considered.
If source counts are taken over random regions on the sky, then 〈μ〉 = 1, but if
the magnification bias is considered around foreground galaxies, then in these
regions, 〈μ〉 > 1. The probability p(μ) satisfies

∫
dμ p(μ) = 1 ;

∫
dμ μ p(μ) = 〈μ〉 ; (110)

the first relation expressing normalization, the second the definition of the
mean magnification. Of course, p(μ) depends on the source redshift and the
density of lenses, as mentioned in the previous section.
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At this point, we need to enter briefly in the discussion on ‘flux conserva-
tion’. As you recall, we have shown that any lens produces at least one image
which is not demagnified, μ ≥ 1, provided κ(θ) is non-negative. If we consider
source counts averaged over the whole sky, then of course 〈μ〉 = 1, and then
(110) implies that if there are lines-of-sight where μ > 1, then there must also
exist those with μ < 1. Hence, we get an apparent contradiction, which has
led to much confusion in the literature. The resolution of this contradiction is
seen when we consider the full matter distribution between us and the sphere
of sources at a given redshift. The unmagnified flux of a source is defined
as that flux which would be observed in a homogeneous Universe, since it
is this model which underlies the definition of the luminosity distance. Now,
the true mass distribution is inhomogeneous, consisting of large overdensities
like galaxies and clusters, and underdensities like voids. A light bundle prop-
agating through an underdense region of the Universe is less focused than
one propagating through the mean density of the Universe, so that the effec-
tive κ < 0 for the former, and μ < 1. Conversely, light bundles propagating
through overdense regions get more focused, resulting in μ > 1. We shall
discuss these relations in more detail in WL (Part 3).

Note that there is a minimum magnification for each source redshift. Since
the cosmic density ρ ≥ 0, a light bundle cannot be more defocused than
propagating through empty space; hence, μ is bound from below, and this
bound depends on the source redshift and the density parameters Ωm and
ΩΛ.

We shall now consider the simple example of source counts which behave
like a power law, N0(> S) = AS−β . Inserting this into (109) yields

N(> S) =
1
〈μ〉

∫
dμ p(μ)A

(μ
S

)β

= N0(> S)
1
〈μ〉

∫
dμ p(μ)μβ . (111)

Thus, if the unlensed source counts behave like a power law, so do the lensed
ones, with the same slope. The ratio between lensed and unlensed counts
depends on the magnification probability distribution p(μ), as well as on the
slope β of the counts. The first remarkable result is that, if β = 1, then (111)
together with the second of (110) imply that N(> S) = N0(> S), i.e., the
counts are unchanged in this case, independent of p(μ). Hence, in this case
the enlargement of the solid angle over which sources are distributed just
compensates the brightening of the sources. For β < 1, the number counts
are depleted, whereas they are increased for β > 1. The larger the slope β,
the larger is the ratio N(> S)/N0(> S), i.e., the stronger is the magnification
bias.

If one considers point sources, or more generally, sources whose angular
sizes are much smaller than the characteristic angular scale of the lenses, then
one can show (Blandford and Narayan 1986) that for very high magnification,
p(μ) ∝ μ−3, up to an upper limit for μ at which the finite size of the source
limits the magnification. This functional dependence is due to the universal
behavior of the lens equation near fold caustics, as was discussed in Sect. 2.4.
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This functional behavior implies that the integral in (111) formally diverges as
the slope β approaches 2. Hence, for a population of sources with steep num-
ber counts, the magnification bias can become very large. In fact, the formal
divergence is due only to the assumption of a pure power law for N0(> S);
whereas such a functional form is a good description, e.g., for the QSO counts
over a limited range of fluxes (or luminosities), it cannot continue with a steep
slope for arbitrarily faint sources, in order for the source population not to
produce infinite total flux. Nevertheless, if the counts are steep, and one con-
siders a value of S much larger than a break flux (where the steep counts
turn into flatter ones towards lower fluxes), the ratio N(> S)/N0(> S) can
be very high indeed. This is the reason why we see extreme QSOs like the
one mentioned above, APM 08279+5255. Furthermore, if the source popula-
tion is better described by a Schechter luminosity function, which implies an
exponential decrease in the counts for high luminosities, the bias can be even
larger: the probability with a Schechter function to find a single source far out
in the exponential tail is very small, and if such an apparently luminous source
is observed, it is most likely a lensed one, as is the case for F10214+4724 and
cB58.

6 The Cosmological Standard Model II:
The Inhomogeneous Universe

Whereas the Universe appears to be nearly homogeneous on large scales, it
certainly is strongly inhomogeneous on smaller scales. Small fluctuations are
imprinted onto the CMB, leading to tiny but measurable anisotropies in its
temperature; in fact, these anisotropy measurements provide the strongest
constraints on cosmological parameters currently available. Furthermore, the
distribution of brighter (thus nearer) galaxies in the sky is highly anisotropic;
galaxies tend to be strongly correlated, they tend to appear in groups or
clusters of galaxies. Thus, on small scales the approximation of a homogeneous
Universe must break down.

6.1 Structure Formation

Whereas the CMB fluctuations indicate very small inhomogeneities at the
time of recombination (corresponding to a redshift z ∼ 1, 100) the inho-
mogeneities observed today in our neighborhood are much larger. A clus-
ter of galaxies, for example, is a massive perturbation with a mean density
more than hundred times larger than the mean density in the Universe. It is
believed that the density inhomogeneities that we see today have evolved from
much smaller fluctuations in the very early Universe. This evolution happens
naturally through gravitational instability. A slightly overdense region has a
somewhat higher self-gravity than the average region of the Universe, so its
expansion rate will be slightly smaller than that of the Universe as a whole.
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As a result of slower expansion, the density contrast of this region increases
further, retarding expansion more, and so on. If the initial density contrast
is sufficiently large, this instability can actually bring the expansion to a halt
locally, after which the region recollapses under its own gravity to form galax-
ies and clusters.

In this picture of gravitational instability, one can study the evolution of
structure in great detail. Since the major mass component in the Universe
is dark matter, which by definition only interacts gravitationally, the dom-
inant process is gravity. However, the laws of gravity are well understood.
Furthermore, additional simplifications arise in certain regimes; e.g., at early
stages in the evolution, density fluctuations are very small. One can there-
fore linearize the equations of gravity around the homogeneous Universe. If
the length scale of the perturbations are much smaller than the characteristic
scale of the Universe [a size given by c/H(a)], gravity can be approximated by
the Newtonian equations. In addition, numerical simulations can follow the
evolution of the density field under the influence of gravity, and great progress
has been made in the level of detail these studies have achieved (e.g., Frenk
et al. 1999; Springel et al. 2001).

We shall outline here a number of results which will be used in later sec-
tions; again, the reader is referred to the excellent textbooks mentioned at the
beginning of this section for a much more detailed treatment.

Horizons

No signal propagates at speeds larger than c; at a given cosmic time t, this
implies that the region within which matter has been in causal contact is
finite, essentially given by ct ∼ c/H(t), where we used that tH(t) ∼ 1. The
size of this region is called the horizon size at time t. The comoving horizon
size is

dH =
c

aH(a)
=

c

H0
Ω−1/2

m a1/2
(
1 +

aeq

a

)−1/2

, (112)

where in the second step we used the approximation for a � 1 when curvature
and vacuum energy play hardly any role; cf. (94). As we shall see, the comoving
horizon size at the epoch of matter and radiation equality is of particular
importance and is

dH(aeq) = 2−1/2cH−1
0 Ω−1/2

m a1/2
eq ≈ 12(Ωmh

2)−1 Mpc . (113)

Linear Density Evolution

If the density fluctuations are small, linear perturbation theory can be used
to describe them. Specifically, one defines the density contrast

δ(x, t) :=
ρ(x, t) − ρ̄(t)

ρ̄(t)
, (114)



Part 1: Introduction to Gravitational Lensing and Cosmology 63

where ρ̄(t) is the mean cosmic matter density at time t, and x is the comov-
ing spatial coordinate. The matter equations are linearized about the homo-
geneous model, and only terms of order δ are considered. If several matter
components are relevant (e.g., non-relativistic matter and radiation, in early
phases of the evolution), one defines a density contrast for each of them, and
considers the (coupled) set of linear evolution equations. As soon as |δ| ∼ 1,
this perturbation theory breaks down, and the full set of non-linear evolution
equations needs to be treated (numerically).

If one considers fluctuations on a scale much smaller than the horizon
scale, one can use Newtonian gravity. The relevant equations in this case are
the Vlasov (or collisionless Boltzmann) equation and the Poisson equation;
the former is usually approximated by the fluid equations, e.g. the continuity
equation and the Euler equation. A homogeneous, expanding Universe is a
solution to these equations, and the expansion factor follows the Friedmann
equation (67). Setting ρ(x, t) = ρ̄(t)[1 + δ(x, t)], these equations are then
transformed into comoving coordinates, e.g. for the Poisson equation one finds

∇2
xΦ = 4πGa2ρ̄δ =

3H2
0

2a
Ωmδ . (115)

Then, writing the velocity field as a sum of the Hubble expansion plus a small
perturbation to it, one finds that the terms linear in δ lead to a single linear
second-order differential equation in time whose coefficients do not depend on
the spatial coordinates. Hence, there are two linearly independent solutions
of the form δ(x, t) = D±(t)Δ±(x). One of the two functions, D−(t) say,
decreases quickly with time and is therefore unimportant for structure growth;
the other one grows with time, so that

δ(x, t) = D+(t) δ0(x) (116)

is the relevant mode for structure growth. The function D+(t) is called the
linear growth factor, which can be obtained from solving the aforementioned
differential equation,

D+ ∝ H(a)
∫ a

0

da′

[a′H(a′)]3
, (117)

with the constant of proportionality chosen such that D+(t0) = 1. Because
of this choice, one has δ(x, t0) = δ0(x); hence, δ0(x) is the current density
contrast provided the evolution of δ follows linear perturbation theory. Even
if it does not, defining the field δ0 is meaningful, since (116) still describes
the evolution of the density contrast for epochs where δ was much smaller
than unity. For obvious reasons, δ0 is called the linearly-extrapolated density
contrast. For an EdS Universe, the growth factor is D+(t) = a(t), for lower-
density models, D+(t) ≥ a(t) (see Fig. 14); Carroll et al. (1992) provide a
fitting formula for D+ for general cosmologies. Note that (116) predicts that
the shape of fluctuations are time-independent in comoving coordinates, with
only their amplitude being a function of time.
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Fig. 14. The growth factor D+ as a function of the scale factor a (left) and as a
function of redshift (right), for three cosmological model: an EdS model (Ωm = 1,
ΩΛ = 0), a low density open model (Ωm = 0.3, ΩΛ = 0), and a low-density flat
Universe (Ωm = 0.3, ΩΛ = 0.7). Notation: in this figure, Ωm = ΩD, ΩΛ = Ωv

Random Fields, Correlation Functions and Power Spectra

Cosmology will never be able to describe the specific density field of our Uni-
verse, since in order to do so, we would need to know the density fluctuation
field δ(x, ti) at some initial time ti. Instead, what a theory of structure for-
mation should explain are the statistical properties of the density field as a
function of time: how many clusters of galaxies per unit volume form as a
function of redshift, how does matter cluster together, etc. This is analogous
to statistical physics, where the behavior of a physical system is described by
its macroscopic statistical properties, not by the trajectories of all molecules.

The density fluctuations δ(x) at some fixed time are considered to be a
random field. A random field is characterized by the probability that a specific
realization δ(x) of the density fluctuations occurs. This probability therefore
is a mapping from the set of functions δ : IR3 → IR to IR+

0 . A conceptually
simpler way to look at this is to assume that all probable realizations of
the density field are ‘smooth’, so that δ(x) can be described, with sufficient
accuracy, by its values on a regular grid in x. Let xi be a set of appropriately
numbered gridpoints, and let δi = δ(xi) be the density contrast at xi. The
realization of the random field is then described by the (possibly infinite)
set of the δi, and the random field is characterized by the joint probability
distribution p(δ1, δ2, . . .)dδ1 dδ2 . . . that δ(xi) lies within dδi of δi. Hence,
we have reduced the description of the random field to a joint probability
distribution of (possibly infinite) discrete random variables. Since the Universe
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is assumed to be statistically homogeneous and isotropic, the density field
should share these properties; this is formulated by the requirement that if all
grid points are translated and rotated the same way, xi → R(xi + y), where
R is a rotation matrix and y a translation vector, the probability density p
must remain unchanged.

More generally, let g(x) be a real or complex homogeneous and isotropic
random field in n dimensions. It is characterized by the probability distri-
bution that a particular realization g(x) can occur – note that we do not
distinguish notationally between the random field and a particular realiza-
tion, though these are two very different concepts. Hence, let p(g(x)) dg be
the probability for the occurrence of the realization g within dg, where dg is
the volume element in function space. Let 〈X〉 denote the ensemble average
of a quantity X, that is, we imagine to have many realizations of this random
field with the same statistical properties, and we average X over all these
realizations. Formally,

〈X〉 =
∫

dg p(g(x))X . (118)

We shall assume that
〈g(x)〉 = 0 , (119)

so that the expectation value of g at every position x vanishes. Consider the
(two-point) correlation function

〈g(x)g∗(y)〉 = Cgg(|x − y|) . (120)

The correlation function can only depend on the separation x − y of the two
points because the homogeneity of the field g means that the correlator cannot
depend on x and y individually. Furthermore, it depends only on |x − y|
because g is an isotropic random field. Note that Cgg is a real function, even
if g is complex, as can be seen by taking the complex conjugate of (120),
which is equivalent to interchanging x and y, thus leaving the right-hand side
unaffected. We define the Fourier transform of g(x) as

ĝ(k) =
∫

IRn

dnx g(x) eix·k ; g(x) =
∫

IRn

dnk

(2π)n
ĝ(k) e−ix·k . (121)

We shall now calculate the ensemble average of 〈ĝ(k) ĝ∗(k′)〉, by inserting the
Fourier representation,

〈ĝ(k) ĝ∗(k′)〉 =
∫

IRn

dnx eix·k
∫

IRn

dnx′ e−ix′·k′ 〈g(x)g∗(x′)〉 . (122)

Using (120) and substituting x′ = x + y, this becomes

〈ĝ(k) ĝ∗(k′)〉 =
∫

IRn

dnx eix·k
∫

IRn

dny e−i(x+y)·k′
Cgg(|y|)

= (2π)nδD(k − k′)
∫

IRn

dny eiy·k Cgg(|y|) (123)

=: (2π)nδD(k − k′)Pg(|k|) ,
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where in the second step the x-integration was performed, and the final equal-
ity defines the power spectrum of the quantity g which obviously depends only
on the modulus of k. Hence, the power spectrum and the correlation function
are Fourier transform pairs,

Pg(|k|) =
∫

IRn

dny eiy·k Cgg(|y|) . (124)

Since the Fourier transform ĝ(k) describes the same random field as g(x),
one can characterize the properties of the random field by the probability
for the occurrence of a realization with Fourier transform ĝ(k). As was done
above for the real-space distribution, one can also discretize ĝ on a grid in
k-space, denoted by gk.

A Gaussian random field is characterized by the properties that (1) the
Fourier components gk are mutually statistically independent, and that (2)
the probability density for gk is described by a Gaussian. The second property
follows in many cases from the first, due to the central limit theorem. The
first property implies that the phases of different Fourier components are
mutually independent. A Gaussian random field is fully described by its power
spectrum; a particular realization of such a random field can be obtained
by drawing Gaussian deviates with dispersion σ(k) =

√
P (|k|) and Fourier

transforming the resulting ĝ(k).
Gaussian random fields are almost universally used to describe the prop-

erties of the density perturbations in the early Universe. This is partly due
to the argument given above, that the central limit theorem suggests that
if the primordial perturbations were generated in a stochastic way (such as
predicted from the inflationary theories), the resulting density field should be
Gaussian. Another reason is that Gaussian random fields have very simple
and convenient properties, which can be derived from the preceding results:
The probability distribution of any linear combination of the random variable
g(xi) is a Gaussian, and more general, the joint probability distribution of
a number M of linear combinations of the random variables g(xi) is a mul-
tivariate Gaussian. In fact, this property can be used to define a Gaussian
random field.

The Power Spectrum

Defining δ̂(k, t) to be the Fourier transform of the density fluctuation field,
then (116) immediately yields that δ̂(k, t) = D+(t)δ̂(k, t0), which implies for
the corresponding power spectrum

Pδ(k, t) = D2
+(t)P0(k) , (125)

where P0(k) is the linearly extrapolated power spectrum which would be the
true present-day power spectrum if the fluctuations follows the linear evolution
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characterized by (116). Furthermore, the factorization of δ̂(k, t) implies that
each Fourier mode evolves independently in time.

There are several situations where (116) is invalid. The obvious one is when
the density contrast approaches unity, where the linearization of the evolution
equations breaks down. We shall discuss this case further below. Second, since
the comoving horizon scale grows in time, the characteristic comoving length
scale λ = 2π/k of each Fourier mode was larger than the horizon size some
time in the past. For such superhorizon fluctuations, Newtonian theory of
gravity necessarily breaks down, and one needs to use linear perturbation
theory of the Einstein equations. Third, for a <∼ aeq radiation dominated the
matter contents of the Universe, which affect the growth of structure. Fourth,
particle populations with an appreciable intrinsic velocity dispersion will not
simply fall into the potential wells, but can stream away from them; this
certainly applies to all relativistic species. One distinguishes between cold
dark matter (CDM), where the characteristic particle velocities are highly
non-relativistic, σv � c, at the time when a = aeq, and hot dark matter
(HDM), when the matter particles are relativistic at this epoch. If the Universe
is dominated by HDM, small-scale fluctuations would be smeared out due to
free-streaming, and the first objects to form would be clusters or superclusters
of galaxies. Since the large-scale matter distribution obtained for such models
are very different in several respects from the observed one, it is concluded that
HDM (such as massive neutrinos) can only contribute a very small fraction
to Ωm. The favored model is one which is dominated by CDM.

The effects of radiation domination in the early Universe and the initial
superhorizon scale of density modes can be summarized as follows: Suppose
at some very early time ti when all Fourier modes of interest had scales much
larger than the horizon scale then, the power spectrum of the density fluctu-
ations was Pi(k). The power spectrum at some later time when all scales of
interest are much smaller than the horizon is then

Pδ(k, t) = T 2(k)
D2

+(t)
D2

+(ti)
Pi(k) , (126)

where the transfer function T (k) accounts for the aforementioned effects.
It can be calculated, and accurate approximation formulae for it are avail-
able (e.g., Bardeen et al. 1986; Eisenstein and Hu 1998). For large scales,
i.e., small k, T ≈ 1. For large k, T (k) ∝ k−2 in a CDM Universe [T (k)
decreases exponentially with k for a HDM model]. The transition between
the two regimes depends on the scale of the comoving horizon at the time
of matter-radiation equality, i.e., on dH(aeq). As cosmological length scales
are measured in h−1 Mpc, this length is ∝ (Ωmh)−1. Thus, the shape of the
transfer function is determined by the shape parameter

Γspect = hΩm exp
[
−Ωb

(
1 +

√
2hΩ−1

m

)]
, (127)

and the final factor yields a small correction which accounts for the baryonic
contribution (with density parameter Ωb) to the density of the Universe. As
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the shape of the power spectrum, which is measurable, has imprinted on it
the comoving horizon scale dH(aeq), this scale is actually observable.

Knowing the transfer function, one needs a prescription for the power
spectrum Pi(k) at some very early times to predict Pδ for later stages of the
evolution. Since at ti all modes of relevance are much larger than the horizon
scale, there is no characteristic length scale available; therefore, one assumes
that the primordial power spectrum was a power law, Pi(k) ∝ kn. Further-
more, if it is assumed that the total power of the fluctuations at the time
when their scale equals the horizon size is independent of k, and for that
matter, independent of time, then n = 1. Such a primordial power spectrum
is called Harrison–Zeldovich power spectrum, and is also the favored value in
theories which explain the origin of primordial fluctuations as initial quan-
tum fluctuations blown up in a period of exponential expansion, the inflation
period.

The linear power spectrum is thus determined in terms of n and the shape
parameter, except for the overall normalization. Several methods exist to fix
this normalization, three of which are mentioned here.

1. Normalization by density fluctuations in a sphere. The relative fluctua-
tions of the galaxy number density in the local Universe, δn/n, is of order
unity if one considers spheres of radius R = 8h−1 Mpc. If one assumes
that the galaxies accurately trace the underlying dark matter field, this
observation would imply that the fluctuation field δ(x, t0), averaged over
a scale of R = 8h−1 Mpc, has a dispersion of 1. However, there is no
guarantee that the galaxy number density field closely follows the dark
matter distribution (see Fig. 15). Nevertheless, one might suspect that the

d=ns

d

x

Fig. 15. This figure depicts a one-dimensional cut through a density field which
contains power on small and large scales, the latter being shown by the dashed curve.
If it is assumed that galaxies form only at locations where the density exceeds a
critical threshold, here indicated by the horizontal line, then it is easily seen that they
are more strongly clustered than the matter field itself, as this threshold is exceeded
predominantly at the peaks of the long wavelength perturbations; therefore, this
would lead to a bias of the galaxy distribution relative to that of the underlying
matter (from Peacock 2003)
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galaxy density is large at those locations where the dark matter density
is also large. In particular, galaxies might find it easier to form in peaks
of the dark matter distribution, and therefore galaxies can be clustered
more than the dark matter. One often summarizes our ignorance about
the relative distribution of galaxies and dark matter into a linear bias
factor b, defined such that the fluctuations of the galaxy number density
are a factor b larger than the fluctuations of the underlying dark matter
distribution (for a detailed discussion on biasing, see, e.g., Bardeen et al.
1986; Kauffmann, Nusser and Steinmetz 1997). We define the density field
smoothed on a scale R by

δR(x) =
∫

IR3
d3y δ0(y)WR(|x − y|) , (128)

where WR(x) is a filter function, normalized such that
∫

d3xWR(x) = 1.
From the convolution theorem for Fourier transforms, one finds δ̂R(k) =
δ̂0(k) ŴR(k), and the power spectrum of the smoothed field is PR(k) =
|ŴR(k)|2 P0(k). The dispersion of the smoothed density field is then

σ2(R) =
〈
δ2R(x)

〉
=
∫

d3k

(2π)3
PR(k) =

∫
d3k

(2π)3

∣
∣∣ŴR(k)

∣
∣∣
2

P0(k) , (129)

where we made use of (124). Note that σ(R) describes the dispersion of
the smoothed version of the linearly extrapolated density field today. If
we take a so-called top-hat filter, which is constant for x ≤ R and zero
otherwise, one has

WR(x) =
3

4πR3
H(R−x) −→ ŴR(k) = 3

sin kR− kR cos kR
(kR)3

. (130)

Coming back to the normalization, the dispersion in the galaxy number
counts then implies that

σ(8h−1Mpc) ≡ σ8 ≈ 1
b
. (131)

2. Normalization through the CMB. The DMR experiment on the COBE
satellite mission (see, e.g., Bond 1996; Smoot 1997 for reviews) has
detected the anisotropy of the microwave background on scales above
∼5 degrees. The degree of anisotropy is proportional to the fluctuation
spectrum, and thus can be used directly to normalize the spectrum. The
normalization of the power spectrum is hampered by the uncertainty
whether the CMB anisotropy on large angular scales is caused solely
by scalar perturbations (i.e., density and associated adiabatic tempera-
ture fluctuations), or whether tensor perturbations (gravitational waves)
have been present at the recombination epoch. On smaller scales, the
expected contribution from tensor modes becomes very small. The first
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year data of the WMAP satellite (Bennett et al. 2003) have provided a
much more accurate determination of the power spectrum normalization,
yielding σ8 = 0.9 ± 0.1 (Spergel et al. 2003). Since the CMB anisotropies
measured by WMAP probe inhomogeneities on considerably larger scales
than 8h−1 Mpc, translating their amplitudes into a value of σ8 depends
on the shape of the power spectrum. In Sect. 6.3, we shall give the best
current estimates of the whole set of cosmological parameters.

3. Normalization by the local abundance of clusters. The number density of
clusters as a function of their mass can be estimated analytically in terms
of the power spectrum Pδ(k), as will be shown later. By comparing the
observed number density of clusters with these prediction, the normal-
ization of the power spectrum is determined (e.g., Eke et al. 1996). This
comparison yields normalizations which, when expressed in terms of σ8,
are of the form

σ8 ≈ 0.52Ω−0.52+0.13Ωm
m for Ωm +ΩΛ = 1 . (132)

These estimates are relatively insensitive to the shape of the power spec-
trum (i.e., of Γspect), because the mass contained in a massive cluster is
about the mass contained in a comoving sphere of radius 8h−1 Mpc, so
that the cluster abundance directly measures σ8. However, there has been
some recent claims that (132) may overestimate σ8 (e.g., Viana et al. 2002,
and references therein). The main problem of the cluster normalization is
to obtain a well-selected sample of clusters (e.g., from X-ray surveys) and
to determine their masses reliably.

As we shall discuss in WL (Part 3), lensing by the large-scale structure
(LSS) provides a powerful tool to determine the normalization of the power
spectrum. As for clusters, this method yields, to lowest order, a degeneracy
between σ8 and the density parameter Ωm.

To summarize, a CDM-dominated Universe has a (linear) power spectrum
given by (126), which is determined by a few parameters. Together with the
assumption that the primordial density field was Gaussian, then the evolved
field will also be Gaussian as long as it stays in the linear regime. Thus, in a
statistical sense, the density field is fully specified, so that this cosmological
model is predictive.

Non-Linear Evolution

When |δ| is no longer much smaller than unity, the linear perturbation theory
breaks down. The first idea, to consider higher-order perturbations, does not
really solve the problem: the perturbation series is not converging, and only
slightly larger perturbations of δ can be described satisfactorily. In addition,
the fluid equations cease to be valid, since due to the converging velocity field,
streams of matter start to intersect, and thus the Vlasov equation needs to be
employed. A different approach, Lagrangian perturbation theory (Zeldovich
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1970; Buchert and Ehlers 1993) is substantially more successful. However,
with the advent of high-speed computers with large memory, the need for
(semi)analytic approximations decreases, as the evolution of the density field
can be obtained from N-body simulations tracing the dark matter particles
(e.g. White et al. 1987; Pearce et al. 2001; Navarro et al. 2004). Each such
simulation yields an evolved realization from an initially Gaussian density
field with power spectrum according to (126), starting at a high redshift. Such
simulations can be either used directly to study the properties of the matter
distribution, or can be used to derive fit formulae for various quantities of
interest, some of which will be discussed below.

Using a scaling argument, Hamilton et al. (1991) derived an approximate
equation relating the linearly evolved power spectrum to the fully non-linear
power spectrum Pδ; this equation contains a single function, whose parameters
can be fitted to the results of N-body simulations. This approximation, later
generalized and refined by Jain, Mo and White (1995) and Peacock and Dodds
(1996), is truly remarkable as it yields an accurate description of the fully non-
linear power spectrum for all values of k and t; example power spectra are
displayed in Fig. 16. More recently, an even more accurate expression has been
obtained by Smith et al. (2003).

6.2 Halo Abundance and Profile

Gravitationally bound objects like galaxies and clusters are of course highly
non-linear structures in the Universe – their average density contrast is much
larger that unity. Nevertheless, there are analytical approaches to determine
their number density as a function of mass and redshift. The best known of
these is the Press–Schechter approach, and more refined ones are deviates of it.

The Mass Function of Halos

The Press and Schechter (1974) approach is based on two considerations: the
time evolution of a spherical overdensity and its collapse, and the statistical
(Gaussian) property of the initial density field.

The spherical collapse model considers an overdensity with spherically
symmetric density distribution. According to Birkhoff theorem, the evolu-
tion of a mass shell M is independent of the radial density profile at larger
radii, as long as shells of matter do not cross each other. The radius of the
mass shell as a function of time then follows an equation of motion. At early
time, when the average density contrast δ inside the mass shell is small, the
expansion closely follows the Hubble expansion, but being slightly slower, the
density contrast grows. This leads to an increased deviation from the Hubble
expansion, and thus further increased density contrast. Provided the latter is
large enough, the expansion of the mass shell can come to a hold (at time
tmax, say), and the radius will decrease from there on: the shell is collapsing.
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Fig. 16. The power spectrum of the cosmic density fluctuations at current epoch,
for various cosmological models. (c/H0)

3P (k) is plotted as a function of (c/H0)k.
The cosmological models are distinguished by line types [with values in parenthe-
sis denoting (σ8, Γspect)], with thin lines displaying the linearly extrapolated power
spectrum, and thick lines the fully non-linear power spectrum following the pre-
scription of Peacock and Dodds (1996). The solid lines correspond to an Einstein-de
Sitter Universe, the dotted lines to an open Universe with Ωm = 0.3, ΩΛ = 0, the
short-dashed lines to a flat low-density Universe with Ωm = 0.3, ΩΛ = 0.7; those
three models are approximately normalized by the present-day cluster abundance,
as discussed at the end of Sect. 6.1, and have the shape parameter Γspect = 0.25.
The remaining two models are EdS cosmologies, with different shape parameter or
different normalization. The linear power spectrum depends only on σ8 and Γspect

(once the primordial slope n = 1 is fixed), so that those three models are degenerate.
This degeneracy is broken in the non-linear spectrum. The non-linear spectrum de-
viates from the linear prediction at (c/H0)k ≥ 1, 000, corresponding to length scales
of L = 2π/k ≤ 20h−1 Mpc

The symmetry of the equation of motion with respect to t → −t then pre-
dicts that the collapse of the mass shell to very small radii takes the same
time as the expansion, so that the shell collapses at time tcoll = 2tmax. If the
mass distribution was exactly symmetric, the collapse would indeed proceed
to basically a single point; however, small-scale inhomogeneities of the matter
distribution will deflect the matter particles from their radial orbit, thereby
enhancing the density fluctuations, and very quickly the orbits of particles
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become randomized. During this process the mass overdensity will virialize,
and this process takes place with a time scale comparable to tcoll (violent
relaxation; Lynden-Bell 1967; Binney and Tremaine 1987). The final state is
then a spherical halo of (dark) matter in nearly virial equilibrium.

In an EdS model, the various parameters of this model can be calculated
analytically: in order for the collapse to occur before the present time, tcoll ≤
t0, the linearly extrapolated mean density contrast δ0 of the mass shell must
satisfy δ0 ≥ δc = 3(12π)2/3/20 � 1.69, and the condition that the collapse
happened before redshift z is that δ0 ≥ δc(1 + z). The mean density of the
virialized halo is 〈ρ〉 = 18π2ρcr(1 + zcoll)3 � 178(1 + zcoll)3ρcr. Note that
(1 + zcoll)3ρcr is the critical density of the EdS Universe at redshift zcoll.
Hence, the mean overdensity of a virialized halo is of order 200 times the
critical density of the Universe at the time of formation. For other cosmological
parameters, these numbers change, but have been calculated (e.g., Eke et al.
1996). Given the idealization of the spherical model, one often defines the
virial radius rvir of a dark matter halo to be the radius within which the
mean density is 200 times the critical density of the Universe.

Next, consider the linear density field at some early time being smoothed
with a top-hat filter of comoving radius R [see (128)]; this corresponds to a
mass inside the filter scale of M = 4πR3ρm0/3. A peak with density contrast
δR ≥ δc(1+ z) in this smoothed density field will then collapse before redshift
z to a virialized halo of mass M . Given that the linear density fluctuations are
assumed to be Gaussian, one can calculate the abundance of peaks exceeding
a certain threshold, and therefore the abundance of halos of a given mass
(determined by the filter scale R) that form before redshift z. This then yields
the Press–Schechter mass formula for the comoving density n(M, z) dM of
halos of mass within dM of M at redshift z,

n(M, z) = −2Ωmρcr√
2πM

δc(z)
σ2(R)

dσ(R)
dM

exp
(
− δc(z)

2σ2(R)

)
, (133)

where the radius R is related to the mass by the equation given above, σ(R) is
given by (129), and δc(z) is the linearly extrapolated density contrast needed
for a mass shell to collapse before redshift z. The mass spectrum of halos
behaves approximately as a power law for masses M <∼ M∗(z), where M∗(z)
is the mass scale at redshift z at which the density field becomes non-linear; it
is defined implicitly through σ2(R∗)D2

+(z) = 1 [cf. (129), with the linear power
spectrum at redshift z being D2

+(z) times the one today]. For masses above
M∗(z), the mass function decreases exponentially. The redshift evolution of
the mass function depends on the cosmological parameters: in low-density
Universes, the evolution with redshift is slower than in an EdS Universe.
Thus, for a given abundance of cluster-mass halos today, the expected num-
ber of massive clusters at high redshift is much smaller for an EdS model
than for a low-density Universe (see Fig. 14). The normalization of the matter
power spectrum through the local cluster abundance, as discussed in Sect. 6.1,
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is based on the prediction of the Press–Schechter function (133) or variants
thereof. Comparison of the mass function with those obtained from N-body
simulations (see Fig. 17), in which halos can be identified using a variety of
techniques, leads to the conclusion that, although the Press–Schechter formula
provides a very useful approximation of the halo abundance, it slightly over-
predicts the number of halos with mass <∼ M∗(z) and underpredicts those with
M >∼ M∗(z). Various refinements to the original Press–Schechter approach
have been conducted, including the collapse of ellipsoidal mass overdensities
(Sheth and Tormen 1999). Jenkins et al. (2001) provided an accurate fit to
the halo abundance obtained from their numerical models; it is very similar
to the one obtained by Sheth and Tormen, and shares the simplicity of the
Press–Schechter formula.

Fig. 17. One of the clusters obtained from N-body simulations. Shown is the dark

matter distribution at redshift z = 0 in a region of 21 × 21 × 8
(
h−1Mpc

)3
. The

strongly structured mass in and around the cluster is clearly visible; it has been
formed through successive mergers of subclusters and groups (taken from the GIF
collaboration; Kauffmann et al. 1999a,b)
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The Press and Schechter approach can also be generalized to include statis-
tical information about the merger history of dark matter halos (e.g., Bond et
al. 1991; Lacey & Coles 1993). These merger histories form the starting point
for semi-analytic models of galaxy formation and evolution (e.g., Kauffmann
et al. 1993, 1994); see Figs. 17 and 18.

z=3 z=2

z=0z=1

Fig. 18. The redshift evolution of the galaxy distribution, obtained by semi-analytic
modeling based on the dark matter distribution as obtained from N-body simulation.
The matter distribution is shown as gray scales and for z = 0 is the same as that
shown in Fig. 17. Colors indicate the mean age of the stellar population in these
galaxies, with blue (red) indicating a young (old) population; red galaxies are seen
to be preferentially found in clusters. At high redshifts, there are of course no old
stellar populations (taken from the GIF collaboration; Kauffmann et al. 1999a,b)



76 P. Schneider

The ‘Universal’ Density Profile

From the numerical simulations, one can investigate the density profile of
typical dark matter halos. Navarro, Frenk and White (1997; hereafter NFW)
found that the density, averaged over spheres, of dark matter halos is described
by a ‘universal’ profile given by

ρ(r) =
δcρcr(z)

(r/rs)(1 + r/rs)2
, (134)

which is shallower than isothermal (r−2) near the halo center and steeper
than isothermal for r >∼ rs. The virial radius is denoted by r200 and is the
radius inside which the mean mass density of the halo equals 200ρcr(z), where
ρcr(z) = 3H2(z)

8πG is the critical density of the Universe at the redshift of the halo.
Hence, r200 immediately yields the mass of the halos, M = 200ρcr(z) 4πr3200/3.
The ratio of the virial radius r200 and the scale radius rs is called the concen-
tration parameter c = r200/rs. From the definition of r200, the parameter δc
can be related to the concentration parameter through

δc =
200
3

c3

ln(1 + c) − c/(1 + c)
. (135)

NFW found that the concentration parameter depends on the mass of the
halo; it is smaller for higher-mass halos. Takada and Jain (2002) found for the
concentration parameter the dependence c = c0(1 + z)−1[M/M∗(z = 0)]−β ,
with c0 ∼ 10 and β ∼ 0.2.

There is no general agreement on the true ‘universality’ of the NFW profile;
different groups obtain slightly different profile slopes for r → 0, whereas the
behavior ρ ∝ r−3 for large r is reproduced by other teams as well.

The NFW Gravitational Lens

The gravitational lensing properties of the NFW profile has been discussed by
Bartelmann (1996), Golse and Kneib (2002) and others. By projecting (134)
along the line-of-sight, the surface mass density can be written as

κ(θ) = κkf(θ/θs) , (136)

where θs = rs/D
ang
D is the angular scale radius,

κk =
2rsδcρcr(z)

Σcr
(137)

the characteristic surface mass density, and

f(x) =
1

x2 − 1
[1 −F(x)] , (138)
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where

F(x) =
acosh(1/x)√

1 − x2
; F(x) =

acos(1/x)√
x2 − 1

(139)

for x < 1 and x > 1, respectively; taking the limit x → 1 in both cases yields
f(1) = 1/3. Similarly, the mean surface mass density κ̄(θ) inside θ is given by
κ̄(θ) = κkh(θ/θs), with

h(x) =
2
x2

[
F(x) + ln

(x
2

)]
, (140)

with h(1) = 2[1 − ln(2)]. The absolute value of the shear is then, as usual,
γ = κ̄ − κ. The surface mass density diverges logarithmically as θ → 0;
therefore, the NWF lens is critical and thus has a tangential and radial critical
curve. Since the deflection angle α = θκ̄ is a smooth function also at θ = 0,
the NFW lens produces either one or three images, i.e., the peculiarities of
the SIS model do not occur here.

6.3 The Concordance Model

The past few years have seen great advances in the determination of the cos-
mological parameters, and the progress is continuing. At present, a set of
cosmological parameters can be defined which seems to be in accord with all
cosmological observations. Particularly notable is the fact that for each of the
parameters there are at least two very different methods for its determination.
Here we briefly mention the major results which led to the current concor-
dance model, excluding the results from gravitational lensing, that will be
described in the later sections.

The main observational results which led to the current set of cosmological
parameters came from the following sources:

• Anisotropies in the CMB. The CMB is nearly isotropic, but there are tem-
perature fluctuations of order ΔT/T ∼ 10−5 superimposed on the isotropic
field (plus, there is the dipole anisotropy reflecting our peculiar motion).
The primary anisotropies are due to density, temperature, and potential
inhomogeneities at the time of recombination, together with corresponding
peculiar velocities of the matter at this epoch (see Hu and Dodelson 2002
for a recent review on the physics of the CMB anisotropies). Furthermore,
anisotropies can be generated and modified during the propagation of the
light from z ∼ 1, 100 to today, causing secondary anisotropies. The angular
power spectrum of these anisotropies depends on basically all cosmological
parameters; therefore, their measurements in recent years have yielded a
wealth of cosmological constraints. Measurements before the release of the
first WMAP data were summarized and analyzed by Wang et al. (2003).
The breathtaking results obtained by WMAP (Bennett et al. 2003; Spergel
et al. 2003) have confirmed earlier measurements, but with substantially
smaller uncertainties.
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• Light element abundances. During the first three minutes after the Big
Bang, the Universe was hot and dense enough to form the lightest chemi-
cal elements. Their primordial abundances depend on the baryon density
Ωb of the Universe, as well as on the number of neutrino species which
determine the expansion rate in the radiation-dominated phase. Whereas
the primordial abundance of helium-4 (about 25% by mass) is fairly insen-
sitive to Ωb, the deuterium abundance is a very strong function of Ωb. In
the past few years, observations of intergalactic clouds in the form of the
Lyman-α absorption lines in high-redshift quasars have yielded determi-
nations of the deuterium-to-hydrogen abundance (e.g., Tytler et al. 2000).
These measurements are extremely valuable, since this intergalactic ma-
terial is thought to be fairly unprocessed chemically, and thus still reflects
the primordial abundance ratios.

• Type Ia supernovae. This type of supernova explosions is believed to origin
from the white dwarfs which just exceed their maximum possible (Chan-
dasekhar) mass; hence, they all would have essentially the same explosion
energy, which makes them excellent candidates for standard candles. In
fact, although their maximum luminosity shows an intrinsic spread, this
variation is correlated with the characteristic width of the light curve,
which has been used for an empirical correction of the maximum luminos-
ity; after this correction, the remaining spread in their peak luminosities
is very small. No redshift evolution in their intrinsic properties (such as
rest-frame colors or spectra) has been found. Hence, by measuring the flux
at maximum light of SN Ia at different redshifts, one can measure the
luminosity distance as a function of z; on the other hand, the luminosity
distance depends on the cosmological parameters Ωm and ΩΛ. Two teams
have systematically searched for high-redshift supernovae (Schmidt et al.
1998; Perlmutter et al. 1999), and constructed the redshift–distance rela-
tion from their events, extending up to z ∼ 1. By now, many SN Ia have
been found even with redshifts >∼ 1 (e.g. Riess et al. 2004); the analysis of
their brightness shows the expected behavior for a Universe which is cur-
rently accelerating, but has been decelerating before z ∼ 0.7, as expected
in a model with ΩΛ ∼ 0.7, Ωm ∼ 0.3, where the transition to vacuum
domination has occurred rather recently.

• Large scale structure. The relation between the distribution of galaxies
and the underlying dark matter distribution is not known; on the other
hand, it is at least plausible that they follow each other closely. In par-
ticular on large spatial scales, say where the density field is still in the
linear regime (L >∼ 10h−1 Mpc), one assumes that the number density
fluctuations of galaxies is proportional to that of the dark matter, with
the proportionality factor being called bias factor b. Then, the power
spectrum of the galaxy distribution is b2 times the matter power spec-
trum. Large two-dimensional and three-dimensional (i.e., redshift) galaxy
surveys have recently been performed (in particular, the 2dF galaxy red-
shift survey; see e.g. Hawkins et al. 2003; the Sloan Digital Sky Survey,
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e.g, Tegmark et al. 2004) to construct the galaxy power spectrum. From
that, the shape of the matter power spectrum, i.e., the shape parameter
Γspect, can be determined, among other parameters (e.g., Peacock 2003).

• Statistics of the Ly-α forest. The spectra of all QSOs show a dense
ensemble of absorption lines shortward of the Ly-α emission line. These
absorption lines are due to the inhomogeneous distribution of intergalac-
tic hydrogen. At high redshift (z ∼ 3) when these lines are observable
in the optical spectrum of QSOs, the corresponding density field of the
gas is still in the linear regime. One therefore expects that the gas follows
the underlying dark matter closely. The gas is in photoionization equilib-
rium with the UV radiation field, and obeys a simple temperature-density
relation. Most of the unknown physical parameters can be put into a mean
absorption which can be measured from the flux decrement across the
Ly-α emission line. The statistics of the Ly-α absorbers therefore probes
the corresponding matter density fluctuation spectrum. Recently, large
samples of QSO spectra became available for this kind of analysis; see
Kim et al. (2004) and Seljak et al. (2005) for recent results.

• Cosmology from galaxy clusters. Clusters provide a wealth of cosmological
information: their abundance depends strongly on the normalization σ8 of
the power spectrum, as mentioned in Sect. 6.1, the evolution of their abun-
dance with redshift probes the rate of growth of structure, which in turn
depends on the density parameters, and their correlation function probes
the shape of the power spectrum on large scales. In addition, clusters are
so large that one can assume their baryon-to-mass ratio fb being very sim-
ilar to the cosmological mean of this ratio. Since the baryon contents of
clusters can be measured from their X-rays, and their mass can be deter-
mined by X-rays, dynamics of their member galaxies and by gravitational
lensing, this baryon fraction can be determined and yields fb ≈ 0.17, with
rather little scatter between clusters.

From these and several other methods, the set of cosmological parame-
ters can be determined. It must be realized that the various parameters are
correlated in a given data set, and sometime rather degenerate [such as seen
in (132)]. Estimates of one parameter need to be obtained by marginalizing
over the remaining ones, and the estimated error bars will depend on how
many parameters were considered in the analysis. This is not the place to
discuss these issues; we therefore present the currently ‘best’ estimates and
approximate 1-σ error bars of the relevant parameters. In Fig. 19, some of the
constraints on the density parameters are summarized, and Fig. 20 illustrates
the concordance in the determination of the power spectrum from a large
variety of different methods.

• The Hubble constant, as determined from the Cepheid distances within
the Hubble Key Project (Freedman et al. 2001) and from combining CMB
data with galaxy redshift surveys, is

H0 ≈ 71 km s−1 Mpc−1 , or h ≈ 0.71 ± 0.04, (141)
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where the error from the CMB plus LSS is formally smaller than from the
Hubble Key Project, by about a factor of two.

• From the deuterium abundance in QSO absorption lines, as well as from
WMAP combined with LSS and Ly-α statistics, the baryonic density pa-
rameter is estimated to be

h2Ωb ≈ 0.023 ± 0.002 , (142)

where we give a slightly larger error than quoted in some recent papers.
Again, consistent results are obtained from totally different methods.

• The CMB anisotropies constrain the total density of the Universe to be
very close to unity,

Ωm +ΩΛ ≈ 1.02 ± 0.02 ; (143)

combining the results from SN Ia studies with the evolution of the cluster
abundance, a similar conclusion is obtained, though with a larger error
estimate.

• The supernovae projects yield a joint constraint on the density parame-
ters as is shown in Fig. 19, and hence by themselves require, a non-zero
cosmological constant.

Fig. 19. This figure sum-
marizes several constraints
in the Ωm–ΩΛ-plane, from
the WMAP measurement
of the CMB, the abun-
dance of clusters, and
the high-redshift SN Ia.
Each of these cosmological
test probe very different
physics; nevertheless, they
yield consistent results –
this form the basis of the
concordance model (taken
from Knop et al. 2003)
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• The 2dF and SDSS galaxy redshift surveys determine the shape parameter;
in particular, from the 2dFGRS one finds

Γspect ≈ Ωmh ≈ 0.18 ± 0.02 , (144)

while the SDSS yield a slightly larger value.
• CMB anisotropies, together with the LSS, yield a value for the matter

density parameter of
Ωm = 0.29 ± 0.04 , (145)

a value that is in excellent agreement from cluster abundance evolution,
the determination of the shape parameter Γspect from the LSS, and the
baryon fraction fb in clusters, when combined with the baryon density Ωb

and the value for the Hubble constant.
• The CMB anisotropy also determines the slope of the primordial den-

sity fluctuation spectrum, which turns out to be close to the Harrison–
Zeldovich value, n ≈ 0.98 ± 0.02.

• Perhaps the parameter with the largest discrepancies between different
methods is the normalization of the power spectrum; we quote here the
value from Seljak et al. (2005), obtained by combining WMAP with the
SDSS galaxy redshift survey and the Ly-α forest analysis,

σ8 = 0.89 ± 0.04 . (146)

• The shape of the power spectrum, as shown in Fig. 20, is sufficiently well
determined to rule out any significant contribution of Hot Dark Matter to
the energy budget of the Universe. Translated into an upper bound on the
sum of neutrino masses, this constraint reads

∑
mν

<∼ 0.5 eV , (147)

an upper limit that is better by a factor of about 10 for the electron
neutrino, and tremendously much better for the other two neutrino species,
than those obtained from laboratory measurements.

6.4 Challenges

One cannot finish a section on cosmology without pointing out the impressive
developments that we are currently witnessing, and some of their implications.
The concordance model that we have described in the previous section is in-
deed a remarkable achievement, if one considers the huge variety of methods
and processes that have entered the determination of its parameters. There
was no a priori guarantee that all of this would fit together. Constraints
obtained from nuclear physics about one minute after the Big Bang are in
agreement with those from the distribution of galaxies in the local Universe!

This concordance model has a large impact on other branches of physics,
most noticeably particle physics. The tight constraints on neutrino masses
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Fig. 20. The power spectrum of density fluctuations, as obtained from a variety
of measurement methods. The CMB anisotropies measure the fluctuations on the
largest spatial scale. Next come measurements from the clustering properties of
galaxies, as obtained in galaxy redshift surveys. The cluster abundance provides
a measurement of the fluctuation power near ∼ 10h−1 Mpc, i.e., close to the scale
where σ8 is defined. Cosmic shear and the statistical properties of the Ly-α forest
provide reliable measurements on small spatial scales (taken from M. Tegmark’s
homepage, based on Tegmark et al. 2004)

obtained from cosmology is the most obvious example of a strong connection
between these two branches of fundamental science. Even more important are
the clear astronomical and cosmological evidences on the existence of non-
baryonic dark matter which most likely is in the form of some as yet unknown
species of elementary particles. This challenge has triggered a large number of
underground experiments for a direct search for these dark matter particles.
On the other hand, the next generation of particle accelerators may cross the
energy threshold where new physics will be discovered. Many elementary par-
ticle physicist would put their eggs into the basket labeled Super-Symmetry,
a theory which would provide a ‘natural’ candidate for the Cold Dark Matter
particle, the neutralino.

Whereas one sees a possible solution to the Dark Matter problem, the sit-
uation is quite different with respect to vacuum energy, or the cosmological
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constant, or dark energy – this variety of names already tells a lot about how
well this dominant component of the Universe is understood. Simple estimates
of the density of vacuum energy from quantum field theory are barely 120
orders of magnitudes off, and we do not know why. It is not understood why
the vacuum energy density is essentially zero (compared to the simple esti-
mates), but in addition, why it is then not exactly zero. A constant vacuum
energy density is not the only ‘model’ discussed for the dark energy; different
equations of state p = w ρ c2 cannot be ruled out by the current data, except
that w <∼ −0.7 at the present epoch. Obtaining tighter constraints on the
equation of state of the dark energy from astronomical observations is proba-
bly the only way to investigate it empirically. The existence of this component
to the cosmic energy budget arguably provides the largest challenge to fun-
damental physics, and its solution will almost certainly involve a unification
of the laws of gravity and quantum mechanics – the long-sought theory of
quantum gravity.

The concordance model also has made inflation a part of the standard
model. Invented some 20 years ago, inflation provides a solution to the flat-
ness problem (why the Universe has a total density parameter that is within
an order of magnitude around unity), the horizon problem (why the CMB
temperature on two opposite sides of the sky is the same within ∼10−5), and
the apparent absence of magnetic monopoles and other topological defects.
The model implies that the Universe underwent an early phase of exponen-
tial expansion, some 10−32 s after the Big Bang, before a phase transition
(‘reheating’) brought it back on track for normal Friedmann expansion. In
this model, the initial density fluctuations in the Universe are quantum fluc-
tuations, inflated to macroscopic scales in the exponential expansion phase.
The predictions of inflation, including that the Universe is nearly perfectly
flat (| − Ωm + ΩΛ − 1| � 1) and that the primordial fluctuation spectrum
is very close to the Harrison–Zeldovich form, 1 − n � 1, have been impres-
sively verified with the recent cosmological observations. Probing the physics
of inflation, e.g. through the presence of primordial gravitational waves which
would leave an observable imprint on the polarization of the CMB, is one of
the challenges of future cosmological studies.

7 Final Remarks

These notes are an extended version of two introductory lectures given at the
beginning of the Saas-Fee course; they were intended to bring the participants
up to speed on topics on which much of the rest of the course rested. Over-
lap with some of the later material was unavoidable, but given the different
character and temperament of the three lecturers, maybe even not undesired.
Some of this overlap will surely be present in these write-ups; hopefully, our
readers do not mind.
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Kundić, T., Turner, E.L., Colley, W.N. et al. 1997, ApJ 482, 75
Lacey, C. & Cole, S. 1993, MNRAS 262, 627
Langston, G.I., Schneider, D.P., Conner, S. et al. 1989, AJ 97, 1283
Laplace, P.S. 1795, Exposition du système du monde.
Lehár, J., Hewitt, J.N., Roberts, D.H. & Burke, B.F. 1992, ApJ 384, 453
Liddle, A.R. & Lyth, D.H. 2000, Cosmological Inflation and Large-Scale Struc-

ture, (Cambridge University Press: Cambridge)
Liebes Jr., S. 1964, Phys. Rev. 133, B835
Lodge, O.J. 1919, Nature 104, 354
Lynden-Bell, D. 1967, MNRAS 136, 101
Lynds, R. & Petrosian, V. 1986, BAAS 18, 1014
Mao, S. 1992, ApJ 389, 63
Maoz, D., Bahcall, J.N., Schneider, D.P. et al. 1993, ApJ 409, 28
Mattig, W. 1958, AN 284, 109
Mellier, Y. 1999, ARA&A 37, 127
Michalitsianos, A.G., Dolan, J.F., Kazanas, D. et al. 1997, ApJ 474, 598
Narayan, R. & Bartelmann, M. 1999, in Formation of Structure in the Uni-

verse, A. Dekel & J.P. Ostriker (eds.), (Cambridge University Press: Cam-
bridge), p. 360

Navarro, J., Frenk, C. & White, S. 1997, ApJ 490, 493
Navarro, J.F., Hayashi, E., Power, C. et al. 2004, MNRAS 349, 1039
Ohanian, H.C. 1983, ApJ 271, 551



Part 1: Introduction to Gravitational Lensing and Cosmology 87
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