
Part 2: Strong Gravitational Lensing

C. S. Kochanek

1 Introduction

The objective of this lecture is to provide a practical introduction to strong
gravitational lensing including the data, the theory, and the application of
strong lensing to other areas of astrophysics. This is Part 2 of the complete
Saas Fee lectures on gravitational lensing. Part 1 (Schneider, this book) pro-
vides a basic introduction, Part 2 (Kochanek, this book) examines strong
gravitational lenses, Part 3 (Schneider, this book) explores cluster lensing and
weak lensing, and Part 4 (Wambsganss, this book) examines microlensing. It
is not my objective in this lecture to provide a historical review, carefully
outlining the genealogy of every development in gravitational lensing, but to
focus on current research topics. Part 1 of these lectures summarizes the his-
tory of lensing and introduces most of the basic equations of lensing. The
discussion is divided into 9 sections. We start in Sect. 2 with an introduction
to the observational data. In Sect. 3 we outline the basic principles of strong
lenses, building on the general theory of lensing from Part 1. In Sect. 4 we
discuss modeling gravitational lenses and the determination of the mass dis-
tribution of lens galaxies. In Sect. 5 we discuss time delays and the Hubble
constant. In Sect. 6 we discuss gravitational lens statistics and the cosmolog-
ical model. In Sect. 7 we discuss the differences between galaxies and clusters
as lenses. In Sect. 8 we discuss the effects of substructure or satellites on grav-
itational lenses. In Sect. 9 we discuss the optical properties of lens galaxies
and in Sect. 10 we discuss extended sources and quasar host galaxies. Finally
in Sect. 11 we discuss the future of strong gravitational lensing.

It will also be clear to the reader that these are my lectures on strong lens-
ing rather than an attempt to achieve some quasi-mythical consensus view. I
have tried to make clear what matters (and what does not), what lensing can
do (and cannot do) for astrophysics, where the field is serving the community
well (and poorly), and where non-experts have understood the consequences
(or have failed to do so). Doing so requires having definite opinions with which
other researchers may well disagree. We will operate on the assumption that
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anyone who disagrees sufficiently violently will have an opportunity to wreak
a horrible revenge at a later date by spending six months doing their own set
of lectures. I have tried to make the references to recent work complete – no
doubt I will have failed in this endeavor. There are many earlier reviews of
lensing (e.g. Blandford and Kochanek 1987a; Blandford and Narayan 1992;
Refsdall and Surdej 1994; Wambsganss 1998; Narayan and Bartelmann 1999;
Courbin, Saha and Schechter 2002b; Claeskens and Surdej 2002) as well as
the book by Schneider, Ehlers and Falco 1992.

2 An Introduction to the Data

There are now 82 candidates for multiple image lenses besides those found
in rich clusters. Of these candidates, there is little doubt about 74 of them,
with the ambiguities resting in candidates consisting of faint galaxies with
nearby arcs and no spectroscopic data. Indeed, the absence of complete spec-
troscopic information is the bane of most astrophysical applications of lenses.
Less than half (38) of the good candidates have both source and lens red-
shifts – 43 have lens redshifts, 64 have source redshifts, and 5 have neither
redshift. Much of this problem could be eliminated in about 5 clear nights
of 8m time, but no TAC seems willing to devote the effort even though lens
redshifts probably provide more cosmological information per redshift than
any other sparsely distributed source. Of these 74 lenses, 11 have had their
central velocity dispersions measured and 10 have measured time delays. A
reasonably complete summary of the lens data is available at the CASTLES
WWW site http://cfa-www.harvard.edu/castles/, although lack of manpower
means that it is updated only episodically.

Figure 1 shows the distribution of the lenses in image separation and source
redshift. The separations of the images range from 0.′′35 to 15.′′9 (using ei-
ther half the image separations or the mean distance of the images from the
lens). The observed distribution combines both the true separation distrib-
ution and selection effects. For example, in simple statistical models using
standard models for galaxy properties (see Sect. 6) we would expect to find
that the logarithmic separation distribution dN/d lnΔθ is nearly constant at
small separations (i.e. dN/dΔθ ∝ Δθ), while the raw, observed distribution
shows a cutoff due to the finite resolution of lens surveys (typically 0.′′25 to
1.′′0 depending on the survey). The cutoff at larger separations is real, and it
is a consequence of the vastly higher lensing efficiency of galaxies relative to
clusters created by the cooling of the baryons in galaxies (see Sect. 7).

Figure 2 shows the distribution in image separation and lens galaxy red-
shift. There is no obvious trend in the typical separation with redshift, as
might be expected if there were rapid evolution in the typical masses of galax-
ies. Unfortunately, there is also an observational bias to measure the redshifts
of large separation lenses, where the lens galaxies tend to be brighter and
less confused with the images, which makes quantitative interpretation of
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Fig. 1. The distribution of lens galaxies in separation Δθ and source redshift zs.
The solid histogram shows the distribution in separation for all the lenses while the
dashed histogram shows the distribution of those with unmeasured source redshifts
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Fig. 2. The distribution of lens galaxies in separation Δθ and lens redshift zl. The
solid histogram shows the distribution in separation for all the lenses while the
dashed histogram shows the distribution of those with unmeasured lens redshifts.
There are no obvious correlations between lens redshift zl and separation Δθ, but
the strong selection bias that small separation lenses are less likely to have measured
redshifts makes this difficult to interpret. There may also be a deficit of low redshift,
large separation lenses, which may be a selection bias created by the difficulty of
finding quasar lenses embedded in bright galaxies
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any trends in separation with redshift difficult. There is probably also a bias
against finding large, low lens redshift systems because the flux from the lens
galaxy will more easily mask the flux from the source. We examine the corre-
lations between image separations and lens magnitudes in Sect. 9.

In almost all cases the lenses have geometries that are “standard” for mod-
els in which the angular structure of the gravitational potential is dominated
by the quadrupole moments of the density distribution, either because the lens
is ellipsoidal or because the lens sits in a strong external (tidal) shear field.
Of the 60 lenses where a compact component (quasar or radio core) is clearly
identifiable, 36 are doubles, 2 are triples, 20 are quads, 1 has five images and 1
has six images. The doubles and quads are the standard geometries produced
by standard lenses with nearly singular central surface densities. Examples of
these basic patterns are shown in Figs. 3 and 4.

In a two-image lens like HE1104–1805 (Wisotzki et al. 1993), the images
usually lie at markedly different distances from the lens galaxy because the
source must be offset from the lens center to avoid producing four images. The
quads show three generic patterns depending on the location of the source
relative to the lens center and the caustics. There are cruciform quads like
HE0435–1223 (Wisotzki et al. 2002), where the images form a cross pattern
bracketing the lens. These are created when the source lies almost directly
behind the lens. There are fold-dominated quads like PG1115+080 (Weymann
et al. 1980), where the source is close to a fold caustic and we observe a close
pair of highly magnified images. Finally, there are cusp-dominated quads like
RXJ1131–1231 (Sluse et al. 2003), where the source is close to a cusp caustic
and we observe a close triple of highly magnified images. These are all generic
patterns expected from caustic theory, as we discuss in Part 1 and Sect. 3.
We will discuss the relative numbers of doubles and quads in Sect. 6.

The lenses with non-standard geometries all have differing origins. One
triple, APM08279+5255 (Irwin et al. 1998; Ibata et al. 1999; Muñoz, Kochanek
and Keeton 2001), is probably an example of a disk or exposed cusp lens
(see Sect. 3), while the other, PMNJ1632–0033 (Winn et al. 2002a,b,c; Winn,
Rusin and Kochanek 2004), appears to be a classical three image lens with
the third image in the core of the lens (Fig. 5). The system with five images,
PMNJ0134–0931 (Winn et al. 2002a,b,c; Keeton and Winn 2003; Winn et al.
2003a,b,c), is due to having two lens galaxies, while the system with six
images, B1359+154 (Myers et al. 1999; Rusin et al. 2001), is a consequence of
having three lens galaxies inside the Einstein ring. Many lenses have luminous
satellites that are required in any successful lens model, such as the satellites
known as “Object X” in MG0414+0534 (Hewitt et al. 1992; Schechter and
Moore 1993) and object D in MG2016+112 (Lawrence et al. 1984) shown in
Fig. 7. These satellite galaxies can be crucial parts of lens models, although
there has been no systematic study of their properties in the lens sample.

If the structure of the source is more complicated, then the resulting image
geometries become more complicated. For example, the source of the radio lens
B1933+503 (Sykes et al. 1998) consists of a radio core and two radio lobes,
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Fig. 3. Standard image geometries. (Top) The two-image lens HE1104–1805. G is
the lens galaxy and A and B are the quasar images. We also see arc images of the
quasar host galaxy underneath the quasar images. (Bottom) The four-image lens
PG1115+080 showing the bright A1 and A2 images created by a fold caustic
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Fig. 4. Standard image geometries (continued). (Top) The four-image lens
RXJ1131–1231 showing the bright A, B and C images created by a cusp caustic.
(Bottom) The four-image lens HE0435–1223, showing the cruciform geometry cre-
ated by a source near the center of the lens. For each lens in Figs. 3 and 4, we took
the CASTLES H-band image, subtracted the bright quasars and then added them
back as Gaussians with roughly the same FWHM as the real PSF. This removes the
complex diffraction pattern of the HST PSF and makes it easier to see low surface
brightness features
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Fig. 5. PMN1632–0033 is the only known lens with a “classical” third image in the
core of the lens galaxy. The center of the lens galaxy is close to the faint C image.
Images A, B and C have identical radio spectra except for the longest wavelength
flux of C, which can be explained by absorption in the core of the lens galaxy. Time
delay measurements would be required to make the case absolutely secure. A central
black hole in the lens galaxy might produce an additional image with a flux about
10% that of image C. (Winn et al. 2004)

leading to 10 observable images because the core and one lobe are quadruply
imaged and the other lobe is doubly imaged (Fig. 6). If instead of discrete
emission peaks there is a continuous surface brightness distribution, then we
observe arcs or rings surrounding the lens galaxy usually of the host galaxy
of the quasar or radio source. Figure 8 shows examples of Einstein rings for
the case of MG1131+0456 in both the radio (Chen and Hewitt 1993) and
the infrared (Kochanek et al. 2000a,b). The radio ring is formed from an
extended radio jet, while the infrared ring is formed from the host galaxy
of the radio source. We also chose most of the examples in Figs. 3 and 4 to
show prominent arcs and rings formed by lensing the host galaxy of the source
quasar. We discuss arcs and rings in Sect. 10.

3 Basic Principles

Most gravitational lenses have the standard configurations we illustrated in
Sect. 2. These configurations are easily understood in terms of the caustic
structures generic to simple lens models. In this section we illustrate the origin
of these basic geometries using simple mathematical examples. We build on
the general outline of lensing theory from Part 1.
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Fig. 6. A Merlin map of B1933+503 showing the 10 observed images of the three
component source (Marlow et al. 1999). The flat radio spectrum core is lensed into
images 1, 3, 4 and 6. One radio lobe is lensed into images 1a and 8, while the other
is lensed into images 2, 7 and 5. Image 2 is really two images merging on a fold

3.1 Some Nomenclature

Throughout this lecture we use comoving angular diameter distances (also
known as proper motion distances) rather than the more familiar angular
diameter distances because almost every equation in gravitational lensing be-
comes simpler. The distance between two redshifts i and j is

Dij =
rH

|Ωk|1/2
sinn

[∫ j

i

|Ωk|1/2dz

((1 + z)2(1 +ΩMz) − z(2 + z)ΩΛ)1/2

]

, (1)

where ΩM , ΩΛ and Ωk = 1 − ΩM − ΩΛ are the present day matter density,
cosmological constant and “curvature” density respectively, rH = c/H0 is the
Hubble radius, and the function sinn(x) becomes sinh(x), x or sin(x) for open
(Ωk > 0), flat (Ωk = 0) and closed (Ωk < 0) models (Carroll, Press and
Turner 1992). We use Dd, Ds and Dds for the distances from the observer
to the lens, from the observer to the source and from the lens to the source.
These distances are trivially related to the angular diameter distances, Dang

ij =
Dij/(1+zj), and luminosity distances, Dlum

ij = Dij(1+zj). In a flat universe,
one can simply add comoving angular diameter distances (Ds = Dd + Dds),
which is not true of angular diameter distances. The comoving volume element
also simplifies to

dV =
D2

ddDddω
(
1 +Ωkr

−2
H D2

d

)1/2
→ D2

dDddω (2)
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Fig. 7. H-band images of two lenses with small companions that are crucial for
successful models. The upper image shows “Object X” in MG0414+0534, and the
lower image shows component D of MG2016+112. MG2016+112 has the additional
confusion that only A and B are images of the quasar (Koopmans et al. 2002).
Image C is some combination of emission from the quasar jet (it is an extended
X-ray source, Chartas et al. 2001) and the quasar host galaxy. Object D is known
to be at the same redshift as the primary lens galaxy G (Koopmans and Treu 2002)
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Fig. 8. The radio (top) and H-band (bottom) rings in MG1131+0456. The radio
map was made at 8 GHz by Chen and Hewitt (1993), while the H-band image is
from Kochanek et al. (2000a,b). The radio source D is probably another example
of a central odd image, but the evidence is not as firm as that for PMN1632–0033.
Note the perturbing satellite galaxies (G9 and G15) in the H-band image
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for flat universes. We denote angles on the lens plane by θ = θ(cosχ, sinχ)
and angles on the source plane by β. Physical lengths on the lens plane are
ξ = Dang

d θ. The lensing potential, denoted by Ψ(θ), satisfies the Poisson
equation ∇2Ψ = 2κ where κ = Σ/Σc is the surface density Σ in units of the
critical surface density Σc = c2Dang

s /(4πGDang
d Dang

ds ). For a more detailed
review of the basic physics, see Part 1.

3.2 Circular Lenses

While one of the most important lessons about modeling gravitational lenses
in the real world is that you can never (EVER !)1 safely neglect the angular
structure of the gravitational potential, it is still worth starting with circular
lens models. They provide a basic introduction to all the elements which are
essential to realistic models without the need for numerical calculation. In a
circular lens, the effective lens potential is a function only of the distance from
the lens center θ = |θ|. Rays are radially deflected by the angle

α(θ) =
2
θ

∫ θ

0

θdθκ(θ) =
4GM(< ξ)

c2ξ

Dds

Ds
, (3)

where we recall from Part 1 that κ(θ) = Σ(θ)/Σc is the surface density
in units of the critical surface density, Dds and Ds are the lens-source and
observer-source comoving distances and ξ = Dang

d θ is the proper distance
from the lens. The bend angle is simply twice the Schwarzschild radius of the
enclosed mass, 4GM(< ξ)/c2, divided by the impact parameter ξ and scaled
by the distance ratio Dds/Ds.

The lens equation (see Part 1) becomes

β = θ [1 − α(θ)/θ] = θ [1 − 〈κ(θ)〉] , (4)

where

〈κ(θ)〉 =
2
θ2

∫ θ

0

θdθκ(θ) = α(θ)/θ (5)

is the average surface density interior to θ in units of the critical density. Note
that there must be a region with 〈κ〉 > 1 to have solutions on both sides of
the lens center. Because of the circular symmetry, all images will lie on a line
passing through the source and the lens center.

The inverse magnification tensor (or Hessian, see Part 1) also has a simple
form, with

M−1 =
dβ

dθ
= (1 − κ)

(
1 0
0 1

)
+ γ

(
cos 2χ sin 2χ
sin 2χ − cos 2χ

)
, (6)

1 AND I MEAN EVER ! DON’T EVEN THINK OF IT !
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where θ = θ(cosχ, sinχ). The convergence (surface density) is

κ =
1
2

(
α

θ
+
dα

dθ

)
, (7)

and the shear is

γ =
1
2

(
α

θ
− dα

dθ

)
= 〈κ〉 − κ. (8)

The eigenvectors of M−1 point in the radial and tangential directions, with a
radial eigenvalue of λ+ = 1−κ+γ = 1−dα/dθ and a tangential eigenvalue of
λ− = 1− κ− γ = 1−α/θ = 1− 〈κ〉. If either one of these eigenvalues is zero,
the magnification diverges and we are on either the radial or tangential critical
curve. If we can resolve the images, we will see the images radially magnified
near the radial critical curve and tangentially magnified near the tangential
critical curve. For example, all the quasar host galaxies seen in Figs. 3 and
4 lie close to the tangential critical line and are stretched tangentially to
form partial or complete Einstein rings. The signs of the eigenvalues λ± give
the parities of the images and the type of time delay extremum associated
with the images. If both eigenvalues are positive, the image is a minimum. If
both are negative, the image is a maximum. If one is positive and the other
negative, the image is a saddle point. The inverse of the total magnification
μ−1 = |M−1| is the product of the eigenvectors, so it is positive for minima
and maxima and negative for saddle points. The signs of the eigenvalues are
referred to as the partial parities of the images, while the sign of the total
magnification is referred to as the total parity.

It is useful to use simple examples to illustrate the behavior of circu-
lar lenses for different density profiles. In most previous lensing reviews, the
examples are based on lenses with finite core radii. However, most currently
popular models of galaxies and clusters have central density cusps rather than
core radii, so we will depart from historical practice and focus on the power-law
lens (e.g. Evans and Wilkinson 1998). Suppose, in three dimensions, that the
lens has a density distribution ρ ∝ r−n. Such a lens will produce deflections of

α(θ) = b

(
θ

b

)2−n

(9)

as shown in Fig. 9, with convergence and shear profiles

κ(θ) =
3 − n

2

(
θ

b

)1−n

and γ(θ) =
n− 1

2

(
θ

b

)1−n

. (10)

The power law lenses cover most of the simple, physically interesting models.
The point-mass lens is the limit n → 3, with deflection α = b2/θ, convergence
κ = 0 (with a central singularity) and shear γ = b2/θ2. The singular isother-
mal sphere (SIS) is the case with n = 2. It has a constant deflection α = b,
and equal convergence and shear κ = γ = b/2θ. A uniform critical sheet is the
limit n → 1 with α = θ, κ = 1 and γ = 0. Models with n → 3/2 have the cusp
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Fig. 9. The bending angles of the power law lens models. Profiles more centrally
concentrated (n > 2) than the SIS (n = 2), have divergent central deflections, while
profiles more extended (n < 2) than SIS have deflection profiles that become zero
at the center of the lens. The n = 1 model is not quite an NFW model because the
surface density is constant rather than logarithmic

exponent of the Moore, Quinn et al. (1999) halo model. The popular ρ ∝ 1/r
NFW (Navarro, Frenk and White 1996, see Sect. 4.1) density cusps are not
quite the same as the n → 1 case because the projected surface density of a
ρ ∝ 1/r cusp has κ ∝ ln θ rather than a constant. Nonetheless, the behavior
of the power law models as n → 1 will be very similar to the NFW model
if the lens is dominated by the central cusp. The central regions of galaxies
probably act like cusps with 1 <∼ n <∼ 2.

The tangential magnification eigenvalue of these models is

1 − κ− γ = 1 − α

θ
= 1 − 〈κ〉 = 1 − (θ/b)1−n, (11)

which is always equal to zero at θ = b ≡ θE . This circle defines the tangential
critical curve or Einstein (ring) radius of the lens. We normalized the models
in this fashion because the Einstein radius is usually the best-determined para-
meter of any lens model, in the sense that all successful models will find nearly
the same Einstein radius (e.g. Kochanek 1991a; Wambsganss and Paczyński
1994). The source position corresponding to the tangential critical curve is
the origin (β = 0), and the reason the magnification diverges is that a point
source at the origin is converted into a ring on the tangential critical curve
leading to a divergent ratio between the “areas” of the source and the image.
The other important point to notice is that the mean surface density inside
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the tangential critical radius is 〈κ〉 ≡ 1 independent of the model. This is true
of any circular lens. With the addition of angular structure it is not strictly
true, but it is a very good approximation unless the mass distribution is very
flattened. The definition of b in terms of the properties of the lens galaxy will
depend on the particular profile. For example, in a point mass lens (n → 3),
b2 = (4GM/c2Dang

d )(Dds/Ds) where M is the mass, while in an SIS lens
(n = 2), b = 4π(σv/c)2Dds/Ds where σv is the (1D) velocity dispersion of
the lens. For the other profiles, b can be defined in terms of some velocity
dispersion or mass estimate for the lens, as we will discuss later in Sect. 4.9
and Sect. 6. The radial magnification eigenvalue of these models is

1 − κ+ γ = 1 − dα

dθ
= 1 − (2 − n)(θ/b)1−n, (12)

which can be zero only if n < 2. If n < 2 the deflection goes to zero at the
origin and the lens has a radial critical curve at θ = b(2−n)1/(n−1) < b interior
to the tangential critical curve. Models with n ≥ 2 have constant (n = 2) or
rising deflection profiles as we approach the lens center and have negative
derivatives dα/dθ at all radii.

A nice property of circular lenses is that they allow simple graphical solu-
tions of the lens equation for arbitrary deflection profiles. There are two parts
to the graphical solution – the first is to determine the radial positions θi of
the images given a source position β, and the second is to determine the mag-
nification by comparing the area of the images to the area of the source. Recall
first, that by symmetry, all the images must lie on a line passing through the
source and the lens. Let θ now be a signed radius that is positive along this
line on one side of the lens and negative on the other. The lens (4) along the
line is simply

θ

|θ|α(|θ|) = θ − β , (13)

where we have rearranged the terms to put the deflection on one side and the
image and source positions on the other. One side of the equation is the bend
angle (Fig. 9), while the other side of the equation, θ − β, is simply a line of
unit slope passing through the source position β. The solutions to the lens
equation for any source position β are the radii θi where the line crosses the
curve.

For understanding any observed lens, it is always useful to first sketch
where the critical lines must lie. Recall from the discussion of caustics in
Part 1, that images are always created and destroyed on critical lines as the
source crosses a caustic, so the critical lines and caustics define the general
structure of the lens. All our power-law models have a tangential critical
line at θ = b, which is the solution α(b) = b and corresponds to the source
position β = 0. The origin, as the projection of the critical curve onto the
source plane, is the tangential caustic (strictly speaking a degenerate pseudo-
caustic) corresponding to the critical line. A point source at the origin is
transformed into an Einstein ring of radius θE = b.
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The second step of the graphical construction is to determine the angular
structure of the image. For simplicity, suppose the source is an arc with radial
width Δβ and angular width Δχ. By symmetry, the angle subtended by an
image relative to the lens center must be the same as that subtended by the
source. For an image at θi and a source at β, the tangential extent of the
image is |θi|Δχ while that of the source is βΔχ. The tangential magnification
of the image is simply |θi|/β = (1− |α(θi)/θi|)−1 after making use of the lens
equation (13), and this is identical to the tangential magnification eigenvalue
(11). The thickness of the arc requires finding the image radii for the inner
and outer edges of the source, θi(β) and θi(β+Δβ). The ratio of the thickness
of the two arcs is the radial magnification,

θi(β +Δβ) − θi(β)
Δβ

� dθ

dβ
=
(

1 − dα

dθ

)−1

, (14)

and this is simply the inverse of the radial eigenvalue of the magnification
matrix (12) where we have taken the derivative of the lens equation (13) with
respect to the source position to obtain the final result. Thus, the tangential
magnification simply reflects the fact that the angle subtended by the source is
the angle subtended by the image, while the radial magnification depends on
the slope of the deflection profile with declining deflection profiles (dα/dθ < 0)
demagnifying the source and rising profiles magnifying the source.

In Fig. 10 we illustrate this for the point mass lens (n → 3). From the
shape of the deflection profile, it is immediately obvious that there will be
only two images, one on each side of the lens. If we assume β > 0, the first
image is a minimum located at

θ1 =
1
2

(
β +

√
β2 + 4b2

)
(15)

with θ1 > θE and positive magnification

μ1 =
1
4

(
β

√
β2 + 4b2

+

√
β2 + 4b2

β
+ 2

)

> 0, (16)

while the second image is a saddle point located at

θ2 =
1
2

(
β −

√
β2 + 4b2

)
(17)

with −θE < θ2 < 0 and negative magnification

μ2 = −1
4

(
β

√
β2 + 4b2

+

√
β2 + 4b2

β
− 2

)

< 0. (18)

As the source approaches the tangential caustic (β → 0) the magnifications of
both images diverge as β−1 and the image radii converge to θE . As the source
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Fig. 10. Graphical solutions for the point mass (n = 3) lens. The top panel shows
the graphical solution for the radial positions of the images, and the bottom panel
shows the graphical solution for the image structure

moves to infinity, the magnification of the first image approaches unity and its
position approaches that of the source, while the second image is demagnified
by the factor (1/2)(b/β) and converges to the position of the lens. The image
separation

|θ1 − θ2| = 2b
√

1 + β2/4b2 ≥ 2b (19)
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is always larger than the diameter of the Einstein ring and the total magnifi-
cation

|μ1| + |μ2| =
2b2 + β2

β
√
β2 + 4b2

≥ 1 (20)

is the characteristic light curve expected for isolated Galactic microlensing
events (see Part 4). The point mass lens has one peculiarity that makes it
different from extended density distributions like galaxies in that it has two
images independent of the impact parameter of the source and no radial caus-
tic. This is a characteristic of any density distribution with a divergent central
deflection (n > 2).

The SIS (n = 2) model is the “standard” lens model for galaxies. Figures 11
and 12 show the geometric constructions for the images of an SIS lens. If
0 < β < b, then the SIS lens also produces two images (Fig. 11). The first
image is a minimum located at

θ1 = β + b with θ1 > b and positive magnification μ1 = 1 + b/β (21)

and the second image is a saddle point located at

θ2 = β − b with −b < θ2 < 0 and negative magnification μ2 = 1 − b/β.
(22)

The image separation |θ1 − θ2| = 2b is constant, and the total magnification
|μ1| + |μ2| = 2b/β is a simple power law. The magnification produced by
an SIS lens is purely tangential since the radial magnification is unity. If,
however, β > b, then there is only one image, corresponding to the minimum
located on the same side of the lens as the source (see Fig. 12). This boundary
on the source plane at β = b between having two images at smaller radii
and only one image at larger radii is a radial (pseudo)-caustic that can be
thought of as being associated with a radial critical curve at the origin. It is a
pseudo-caustic because there are neither images nor a divergent magnification
associated with it.

Historically the next step is to introduce a core radius to have a model with
a true radial critical line and caustic (see Part 1, Blandford and Kochanek
1987a,b; Kochanek and Blandford 1987; Kovner 1987a; Hinshaw and Krauss
1987; Krauss and White 1992; Wallington and Narayan 1993; Kochanek
1996a,b). Instead we will consider the still softer power law model with
n = 3/2, which would correspond to the central exponent of the “Moore”
profile proposed for CDM halos (Moore et al. 1998). As Fig. 13 shows, there
is only one solution for |β| > b/4, a minimum located at

θ1 =
1
2

(
b+ 2β +

√
b+ 4β

)
, (23)

and with θ1 > b assuming β is positive. The magnification expressions are too
complex to be of much use, but the magnification μ1 diverges at θ = b when
the source is on the tangential pseudo-caustic at β = 0. As Fig. 14 shows,



108 C.S. Kochanek

-2 0 2

-2

0

2

-2 0 2

-2

0

2

Fig. 11. Graphical solutions for the SIS (n = 2) lens when β < b and there are two
images

we find two additional images once |β| < b/4. The first additional image is a
saddle point located at

θ2 =
1
2

(
−b+ 2β −

√
b+ 4β

)
(24)

with −b < θ2 < −b/4, which has a negative magnification that diverges at
both θ2 = −b (the tangential critical curve) and θ2 = −b/4. This latter radius
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Fig. 12. Graphical solutions for the SIS (n = 2) lens when β > b and there is only
one image

defines the radial critical curve where the magnification diverges because the
radial magnification eigenvalue 1 − κ+ γ = 1 − dα/dθ = 0 at radius θ = b/4.
The third image is a maximum located at

θ3 =
1
2

(
−b+ 2β +

√
b+ 4β

)
(25)
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Fig. 13. Graphical solutions for the Moore profile cusp (n = 3/2) lens when β > b/4
and there is only one image

with −b/4 < θ2 < 0 and a positive magnification that diverges on the radial
critical curve. As we move the source outward from the center we would see
images 2 and 3 approach each other, merging on the radial critical line where
they would have divergent magnifications, and then vanishing to leave only
image 1. We would see the same pattern if instead of softening the exponent
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Fig. 14. Graphical solutions for the Moore profile cusp (n = 3/2) lens when β < b/4
and there are three images. At the top of the figure we illustrate the geometric
meaning of the image partial parities defined by the signs of the magnification tensor
eigenvalues (see text)

we had followed the traditional path and added a core radius to the SIS model.
With a finite core radius the central deflection profile would pass through zero,
and this would introduce a radial critical curve and a third image which would
be a maximum of the time delay surface.
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In Fig. 14 we also illustrate the geometric meaning of the partial parities
(the signs of the magnification eigenvalues). A source structure (the L above
the source) defines the reference shape. Image 1 is a minimum with positive
partial parities (++) defined by the signs of the tangential and radial eigen-
values. The basic orientation of image 1 is the same as the source. Image 2 is
a saddle point with mixed partial parities (−+) because the tangential eigen-
value is negative while the radial eigenvalue is positive. This means that the
image is inverted in the tangential direction relative to the source. Image 3
is a maximum with negative partial parties (−−), so the image is inverted
in both the radial and tangential directions relative to the source. The total
parity, the product of the partial parities, is positive for maxima and minima
so the orientation of the image can be produced by rotating the source. The
total parity of the saddle point image is negative, so its orientation cannot be
produced by a rotation of the source.

3.3 Non-Circular Lenses

The tangential pseudo-caustic at the origin producing Einstein ring images is
unstable to the introduction of any angular structure into the gravitational po-
tential of the lens. There are two generic sources of angular perturbations. The
first source of angular perturbations is the ellipticity of the lens galaxy. What
counts here is the ellipticity of the gravitational potential rather than of the
surface density. For a lens with axis ratio q, ellipticity ε = 1−q, or eccentricity
e = (1− q2)1/2, the ellipticity of the potential is usually εΨ ∼ ε/3 – potentials
are always rounder than densities. The second source of angular perturbations
is tidal perturbations from any nearby objects. This is frequently called the
“external shear” or the “tidal shear” because it can be modeled as a linear
shearing of the deflections. In all known lenses, quadrupole perturbations (i.e.
Ψ ∝ cos(2χ) where χ is the azimuthal angle) dominate – higher order mul-
tipoles are certainly present and they can be quantitatively important, but
they are smaller. For example, in an ellipsoid the amplitude of the cos 2mχ
multipole scales as εmΨ (see Sect. 4.4 and Sect. 8).

Unfortunately, there is no example of a non-circular lens that can be solved
in full generality unless you view the nominally analytic solutions to quartic
equations as helpful. We can make the greatest progress for the case of an
SIS in an external (tidal) shear field. Tidal shear is due to perturbations from
nearby objects and its amplitude can be determined by Taylor expanding its
potential near the lens (see Part 1 and Sect. 4). Consider a lens with Einstein
radius θE perturbed by an object with effective lens potential Ψ a distance θp

away. For θE � θp we can Taylor expand the potential of the nearby object
about the center of the primary lens, dropping the leading two terms.2 This
2 The first term, a constant, gives an equal contribution to the time delays of all

the images, so it is unobservable when all we can measure is relative delays.
The second term is a constant deflection, which is unobservable when all we can
measure is relative deflections.
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leaves, as the first term with observable consequences,

Ψ(θ) � 1
2
θ · ∇∇Ψ · θ =

1
2
κpθ

2 − 1
2
γpθ

2 cos 2(χ− χp), (26)

where κp is the surface density of the perturber at the center of the lens
galaxy and γp > 0 is the tidal shear from the perturber. If the perturber is
an SIS with critical radius bp and distance θp from the primary lens, then
κp = γp = bp/2θp. With this normalization, the angle χp points toward the
perturber. For a circular lens, the shear γp = 〈κ〉 − κ can be expressed in
terms of the surface density of the perturber, and it is larger (smaller) than
the convergence if the density profile is steeper (shallower) than isothermal.

The effects of κp are observable only if we measure a time delay or have an
independent estimate of the mass of the lens galaxy, while the effects of the
shear are easily detected from the relative positions of the lensed images (see
Part 1). Consider, for example, one component of the lens equation including
an extra convergence,

β1 = θ1(1 − κp) − dΨ/dθ1, (27)

and then simply divide by 1 − κp to get

β1/(1 − κp) = θ1 − (dΨ/dθ1)/(1 − κp). (28)

The rescaling of the source position β1/(1−κp) has no consequences since the
source position is not an observable quantity, while the rescaling of the deflec-
tion is simply a change in the mass of the lens. This is known as the “mass
sheet degeneracy” because it corresponds to adding a constant surface den-
sity sheet to the lens model (Falco, Gorenstein and Shapiro 1985), and it is an
important systematic problem for both strong lenses and cluster lenses (see
Part 3).

Thus, while the extra convergence can be important for the quantitative
understanding of time delays or lens galaxy masses, it is only the shear that
introduces qualitatively new behavior to the lens equations. The effective po-
tential of an SIS lens in an external shear is Ψ = bθ + (γ/2)θ2 cos 2χ leading
to the lens equations

β1 = θ1(1 − γ) − bθ1/|θ|
β2 = θ2(1 + γ) − bθ2/|θ|

, (29)

where for γ > 0 the perturber is due North (or South) of the lens. The inverse
magnification is

μ−1 = 1 − γ2 − b

θ
(1 − γ cos 2χ) , (30)

where θ = (θ1, θ2) = θ(cosχ, sinχ).
The first step in any general analysis of a new lens potential is to locate

the critical lines and caustics. In this case we can easily solve μ−1 = 0 to find
that the tangential critical line

θ = b
1 − γ cos 2χ

1 − γ2
(31)
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is an ellipse whose axis ratio is determined by the amplitude of the shear γ
and whose major axis points toward the perturber. We call it the tangential
critical line because the associated magnifications are nearly tangential to the
direction to the lens galaxy and because it is a perturbation to the Einstein
ring of a circular lens. The tangential caustic, the image of the critical line on
the source plane, is a curve called an astroid (Fig. 15, it is not a “diamond”
despite repeated use of the term in the literature). The parametric expression
for the astroid curve is

β1 = − 2bγ
1 + γ

cos3 χ = −β+ cos3 χ β2 = +
2bγ

1 − γ
sin3 χ = β− sin3 χ, (32)

where the parameter χ is the same as the angle appearing in the critical curve
(31) and we have defined β± = 2bγ/(1 ± γ) for the locations of the cusp tips
on the axes. The astroid consists of 4 cusp caustics on the symmetry axes
of the lens connected by fold caustics with a major axis pointing toward the
perturber. Like the SIS model without any shear, the origin plays the role of
the radial critical line and there is a circular radial pseudo-caustic at β = b.

As mentioned earlier, there is no useful general solution for the image
positions and magnifications. We can, however, solve the equations for a source
on one of the symmetry axes of the lens. For example, consider a solution on
the minor axis of the lens (β2 = 0 for γ > 0). There are two ways of solving the
lens equation to satisfy the criterion. One is to put the images on the same axis
(θ2 = 0) and the other is to place them on the arc defined by 0 = 1 + γ− b/θ.
The images with θ2 = 0 are simply the SIS solutions corrected for the effects
of the shear. Image 1 is defined by

θ1 =
β1 + b

1 − γ
with μ−1 =

(
1 − γ2

) β+ + β1

b+ β1
, (33)

and image 2 is defined by

θ1 =
β1 − b

1 − γ
with μ−1 =

(
1 − γ2

) β+ − β1

b− β1
. (34)

Image 1 exists if β1 > −b, it is a saddle point for −b < β1 < −β+ and it
is a minimum for β1 > −β+. Image 2 has the reverse ordering. It exists for
β1 < b, it is a saddle point for β+ < β1 < b and it is a minimum for β1 < β+.
The magnifications of both images diverge when they are on the tangential
critical line (β1 = −β+ for image 1 and β1 = +β+ for image 2) and approach
zero as they move into the core of the lens (β1 → −b for image 1 and β1 → +b
for image 2). These two images shift roles as the source moves through the
origin. The other two solutions are both saddle points, and they exist only if
the source lies inside the astroid (|β1| < β+ along the axis). The positions of
images 3 (+) and 4 (−) are

θ1 = −β1

2γ
θ2 = ± b

1 + γ

[

1 −
(
β1

β+

)2
]1/2

, (35)
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Fig. 15. Example of a minor axis cusp on the source (top) and image (bottom)
planes. When the source is inside both the radial and tangential caustics (triangles)
there are four images. As the source moves toward the cusp, three of the images
head towards a merger on the critical line and become highly magnified to leave
only one image once the source crosses the cusp and lies between the two caustics
(open squares). In a minor axis cusp, the image surviving the cusp merger is a saddle
point interior to the critical line. As the source approaches the radial caustic, one
image approaches the center of the lens and then vanishes as it crosses the caustic
to leave only one image (pentagons)
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and they have equal magnifications

μ−1 = −2γ(1 + γ)

[

1 −
(
β1

β+

)2
]

. (36)

The magnifications of the images diverge when the source reaches the cusp
tip (|β1| = β+) and the image lies on the tangential critical curve.

Thus, if we start with a source at the origin we can follow the changes
in the image structure (see Figs. 15 and 16). With the source at the origin
we see 4 images on the symmetry axes with reasonably high magnifications,∑

|μi| = (2/γ)/(1 − γ2) ∼ 10. It is a generic result that the least magnified
four-image system is found for an on-axis source, and this configuration has
a total magnification of order the inverse of the ellipticity of the gravitational
potential. As we move the source toward the tip of the cusp (β → β+, Fig. 15),
image 1 simply moves out along the symmetry axis with slowly dropping mag-
nification, while images 2, 3 and 4 move toward a merger on the tangential
critical curve at θ = (−β+, 0). Their magnifications steadily rise and then
diverge when the source reaches the cusp. If we move the source further out-
ward we find only images 1 and 2 with 1 moving outward and 2 moving
inward toward the origin. As it approaches the origin, image 2 becomes de-
magnified and vanishes when β → b. Had we done the same calculation on
the major axis (Fig. 16), there is a qualitative difference. As we moved im-
age 1 outward along the β2 axis, image 3 and 4 would merge with image 1
when the source reaches the tip of the cusp at β2 = β− rather than with
image 2.

Unfortunately once we move the source off a symmetry axis, there is no
simple solution. It is possible to find the locations of the remaining images
given that two images have merged on the critical line, and this is useful for
determining the mean magnifications of the lensed images, a point we will
return to when we discuss lens statistics in Sect. 6. Here we simply illustrate
(Fig. 17) the behavior of the images when we move the source radially outward
from the origin away from the symmetry axes. Rather than three images
merging on the tangential critical line as the source approaches the tip of a
cusp, we see two images merging as the source approaches the fold caustic of
the astroid. This difference, two images merging versus three images merging,
is a generic difference between folds and cusps as discussed in Part 1. All
images in these four-image configurations are restricted to an annulus of width
∼ γb around the critical line, so the mean magnification of all four image
configurations is also of order γ−1 (see Finch et al. 2002).

There is one more possibility for the caustic structure of the lens if the
external shear is large enough. For 1/3 < |γ| < 1, the tip of the astroid
caustic extends outside the radial caustic, as shown if Fig. 18. This allows
a new image geometry, known as the cusp or disk geometry, where we see
three images straddling the major axis of a very flattened potential. It is
associated with the caustic region inside the astroid caustic associated with
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Fig. 16. Example of a major axis cusp on the source (top) and image (bottom)
planes. When the source is inside both the radial and tangential caustics (triangles)
there are four images. As the source moves toward the cusp, three of the images
head towards a merger on the critical line and become highly magnified to leave
only one image once the source crosses the cusp and lies between the two caustics
(open squares). In a major axis cusp, the image surviving the cusp merger is the
minimum corresponding to the image we would see in the absence of a lens. As the
source approaches the radial caustic, one image approaches the center of the lens and
then vanishes as the source crosses the caustic to leave only one image (pentagons)



118 C.S. Kochanek

Fig. 17. Example of a fold merger on the source (top) and image (bottom) planes.
When the source is inside both the radial and tangential caustics (filled squares)
there are four images. As the source crosses the tangential caustic, two images merge,
become highly magnified and then vanish, leaving only two images (triangles) when
the source is outside the tangential caustic but inside the radial caustic. As the
source approaches the radial caustic, one image moves into the center of the lens
and then vanishes when the source crosses the radial caustic to leave only one image
when the source is outside both caustics (open squares)

the tangential critical line but outside the radial caustic. This configuration
appears to be rare for lenses produced by galaxies, with APM08279+5255
as the only likely candidate, but relatively more common in clusters. The
difference is that clusters tend to have shallower density profiles than galaxies,
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Fig. 18. Example of a cusp or disk image geometry on the source (top) and image
(bottom) planes. The shear is high enough to make the tangential caustic extend out-
side the radial caustic. For a source inside both caustics (triangles) we see a standard
four-image geometry as in Fig. 16. However, for a source outside the radial caustic
but inside the tangential caustic (squares) we have three images all on one side of the
lens. This is known as the cusp geometry because it is always associated with cusps,
and the disk geometry because flattened disks are the only natural way to produce
them. Once the source is outside the cusp tip (pentagon), a single image remains

which shrinks the radial caustics relative to the tangential caustics to allow
more cross section for this image configuration and lower ellipticity thresholds
before it becomes possible (Oguri and Keeton 2004 most recently, but also see
Kochanek and Blandford 1987; Kovner 1987a; Wallington and Narayan 1993).
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In general, it is far more difficult to analyze ellipsoidal lenses, in part be-
cause few ellipsoidal lenses have analytic expressions for their deflections. The
exception is the isothermal ellipsoid (Kassiola and Kovner 1993; Kormann,
Schneider and Bartelmann 1994; Keeton and Kochanek 1998), including a
core radius s, which is both analytically tractable and generally viewed as
the most likely average mass distribution for gravitational lenses. The surface
density of the isothermal ellipsoid

κ =
1
2
b

ω
where ω2 = q2(θ2

1 + s2) + θ2
2 (37)

depends on the axis ratio q and the core radius s. For q = 1 − ε < 1 the
major axis is the θ1 axis and s is the major axis core radius. The deflections
produced by this lens are remarkably simple,

α1 =
b

√
1 − q2

tan−1

[
θ1
√

1 − q2

ω + s

]

, α2 =
b

√
1 − q2

tanh−1

[
θ2
√

1 − q2

ω + q2s

]

.

(38)
The effective lens potential is cumbersome but analytic,

Ψ = θ · α − bs ln
[
(ω + s)2 + (1 − q2)θ2

1

]
, (39)

the magnification is simple

μ−1 = 1 − b

ω
− b2s

ω [(ω + s)2 + (1 − q2)θ2
1]

(40)

and becomes even simpler in the limit of a singular isothermal ellipsoid (SIE)
with s = 0 where μ−1 → 1 − b/ω. In this case, contours of surface density κ
are also contours of the magnification, and the tangential critical line is the
κ = 1/2 isodensity contour just as for the SIS model. The critical radius scale
b can be related to the circular velocity in the plane of the galaxy relatively
easily. For an isothermal sphere we have that bSIS = 4π(σv/c)2Dds/Ds where
the circular velocity is vc =

√
2σv. For the projection of a three-dimensional

(3D) oblate ellipsoid of axis ratio q3 and inclination i, so that q2 = q23 cos2 i+
sin2 i, the deflection scale is b = bSIS(e3/ sin−1 e3) where e3 =

√
1 − q23 is

the eccentricity of 3D mass distribution. In the limit that q3 → 0 the model
becomes a Mestel (1963) disk, the infinitely thin disk producing a flat rotation
curve, and b = 2bSIS/π (see Sect. 4.9 and Keeton, Kochanek and Seljak 1997;
Keeton and Kochanek 1998; Chae 2003). At least for the case of a face-on
disk, at fixed circular velocity you get a smaller Einstein radius as you make
the 3D distribution flatter because a thin disk requires less mass to produce
the same circular velocity.

We can generate several other useful models from the isothermal ellipsoids.
For example, steeper ellipsoidal density distributions can be derived by dif-
ferentiating with respect to s2. The most useful of these is the first derivative
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with κ ∝ ω−3/2 which is related to the Kuzmin (1956) disk (see Kassiola and
Kovner 1993; Keeton and Kochanek 1998). It is also easy to generate models
with flat inner rotation curves and truncated halos by taking the difference of
two isothermal ellipsoids. In particular if κ(s) is an isothermal ellipsoid with
core radius s, the model

κ = κ(s) − κ(a) (41)
with a > s has a central core region with a rising rotation curve for θ <∼ s,
a flat rotation curve for s <∼ θ <∼ a and a dropping rotation curve for θ >∼ a.
In the singular limit, it becomes the “pseudo-Jaffe model” corresponding to a
3D density distribution ρ ∝ (r2 + s2)−1(r2 + a2)−1 whose name derives from
the fact that it is very similar the Jaffe model with ρ ∝ r−2(r + a)−2 (Kneib
et al. 1996; Keeton and Kochanek 1998). We will discuss other common lens
models in Sect. 4.1.

The last simple analytic models we mention are the generalized singular
isothermal potentials of the form Ψ = θF (χ) with surface density κ(θ, χ) =
(1/2)(F (χ) + F ′′(χ))/θ. Both the SIS and SIE are examples of this model.
The generalized isothermal sphere has a number of useful analytic properties.
For example, the magnification contours are isodensity contours

μ−1 = 1 − 1
θ

[F (χ) + F ′′(χ)] = 1 − 2κ(θ, χ) (42)

with the tangential critical line being the contour with κ = 1/2, and the time
delays between images depend only on the distances from the images to the
lens center (see Witt, Mao and Keeton 2000; Kochanek, Keeton and McLeod
2001a; Wucknitz 2002; Evans and Witt 2003).

4 The Mass Distributions of Galaxies

Contrary to popular belief, the modeling of gravitational lenses to determine
the mass distribution of a lens is not a “black art.” It is, however, an area in
which the lensing community has communicated results badly. There are two
main problems. First, many modeling results seem almost deliberately obfus-
catory as to what models were actually used, what data were fit and what was
actually constrained. Not only do many lens papers insist on taking well known
density distributions from the dynamical literature and assigning them new
names simply because they have been projected into two dimensions, but they
then assign them a plethora of bizarre acronyms. Sometimes the model used
is not actually the one named, for example using tidally truncated halos but
calling them isothermal models. Second, there is a steady confusion between
the parameters of models and the aspects of the mass distribution that have
actually been constrained. Models with apparently very different parameters
may be in perfect accord as to the properties of the mass distribution that
are actually relevant to what is observed. Discussions of non-parametric mass
models then confuse the issue further by conflating differences in parameters
with differences in what is actually constrained to argue for non-parametric
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models when in fact they also are simply matching the same basic properties
with lots of extra noise from the additional and uninteresting degrees of free-
dom. In short, the problem with lens modeling is not that it is a “black art”
but that the practitioners try to make it seem to be a “black art” presum-
ably so that people will believe they need wizards. The most important point
to take from this section is that any idiot can model a lens and interpret it
properly with a little thinking about what it is that lenses constrain.

There are two issues to think about in estimating the mass distributions of
gravitational lenses. The first issue is how to model the mass distribution with
a basic choice between parametric and non-parametric models. In Sect. 4.1
we summarize the most commonly used radial mass distributions for lens
models. Ellipsoidal versions of these profiles combined with an external (tidal)
shear are usually used to describe the angular structure, but there has been
recent interest in deviations from ellipsoidal distributions which we discuss in
Sect. 4.4 and Sect. 8. In Sect. 4.7 we summarize the most common approaches
for non-parametric models of the mass distribution. Since this is my review,
I will argue that the parametric models are all that is needed to model lenses
and that they provide a better basis for understanding the results than non-
parametric models (but the reader should be warned that if Prasenjit Saha
was writing this you would probably get a different opinion).

The second issue is to determine the aspects of the lens data that actually
constrain the mass distribution. Among the things that can be measured for a
lens are the relative positions of the components (the astrometric constraints),
the relative fluxes of the images, the time delays between the images, the dy-
namical properties of the lens galaxy, and the microlensing of the images. Of
these, the most important constraints are the positions. We can usually mea-
sure the relative positions of the lensed components very accurately (5 mas
or better) compared to the arc second scales of the component separations.
Obviously the accuracy diminishes when components are faint, and the usual
worst case is having very bright lensed quasars that make it difficult to de-
tect the lens galaxy. As we discuss in Sect. 8, substructure and/or satellites of
the lens galaxy set a lower limit of order 1–5 mas with which it is safe to im-
pose astrometric constraints independent of the measurement accuracy. When
the source is extended, the resulting arcs and rings discussed in Sect. 10 pro-
vide additional constraints. These are essentially astrometric in nature, but
are considerably more difficult to use than multiply imaged point sources.
Our general discussion of how lenses constrain the radial (Sect. 4.3) and an-
gular structure (Sect. 4.4) focus on the use of astrometric constraints, and in
Sect. 4.6 we discuss the practical details of fitting image positions in some
detail.

The flux ratios of the images are one of the most easily measured con-
straints, but are presently unusable. Flux ratios measured at a single epoch
are affected by time variability in the source (Sect. 5), microlensing by the
stars in the lens galaxy in the optical continuum (see Part 4), magnification
perturbations from substructure at all wavelengths (see Sect. 8), absorption
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by the interstellar medium (ISM) of the lens (dust in the optical, free-free
in the radio) and scatter broadening in the radio (see Sect. 8 and Sect. 9).
Most applications of flux ratios have focused on using them to probe these
perturbing effects rather than for studying the mean mass distribution of the
lens. Where radio sources have small scale VLBI structures, the changes in
the relative astrometry of the components can constrain the components of
the relative magnification tensors without needing to use any flux information
(e.g. Garrett et al. 1994; Rusin et al. 2002).

Two types of measurements, time delays (Sect. 5) and microlensing by the
stars or other compact objects in the lens galaxy (Part 4) constrain the surface
density near the lensed images. Microlensing also constrains the fraction of
that surface density that can be in the form of stars. To date, time delays have
primarily been used to estimate the Hubble constant rather than the surface
density, but if we view the Hubble constant as a known quantity, consider
only time delay ratios, or simply want to compare surface densities between
lenses, then time delays can be used to constrain the mass distribution. We
discuss time delays separately because of their close association with attempts
to measure the Hubble constant. Using microlensing variability to constrain
the mass distribution is presently more theory than practice due to a lack of
microlensing light curves for almost all lenses. However, the light curves of
the one well monitored lens, Q2237+0305, appear to require a surface density
composed mainly of stars as we would expect for a lens where we see the
images deep in the bulge of a nearby spiral galaxy (Kochanek 2004). We will
not discuss this approach further in Part 2.

Any independent measurement of the mass of a component will also help to
constrain the structure of the lenses. At present this primarily means making
stellar dynamical measurements of the lens galaxy and comparing the dynam-
ical mass estimates to those from the lens geometry. We discuss this in detail
in Sect. 4.9. For lenses associated with clusters, X-ray, weak lensing or cluster
velocity dispersion measurements can provide estimates of the cluster mass.
While this has been done in a few systems (e.g. X-rays, Morgan et al. 2001;
Chartas et al. 2002; weak lensing, Fischer et al. 1997; velocity dispersions,
Angonin-Willaime, Soucail and Vanderriest 1994), the precision of these mass
estimates is not high enough to give strong constraints on lens models. X-ray
observations are probably more important for locating the positions of groups
and clusters relative to the lens than for estimating their masses.

The most useful way of thinking about lensing constraints on mass dis-
tributions is in terms of multipole expansions (e.g. Kochanek 1991a; Trot-
ter, Winn and Hewitt 2000; Evans and Witt 2003; Kochanek and Dalal
2004). An arbitrary surface density κ(θ) can be decomposed into multipole
components,

κ(θ) = κ0(θ) +
∞∑

m=1

[κcm(θ) cos(mχ) + κsm(θ) sin(mχ)] , (43)
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where the individual components are angular averages over the surface density

κ0(θ) =
1
2π

∫ 2π

0

dχκ(θ), and
(
κcm(θ)
κsm(θ)

)
=

1
π

∫ 2π

0

dχ

(
κ(θ)cos(mχ)
κ(θ) sin(mχ)

)
.

(44)
The first three terms are the monopole (κ0), the dipole (m = 1) and the
quadrupole (m = 2) of the lens. The Poisson equation ∇2Ψ = 2κ is separable
in polar coordinates, so a multipole decomposition of the effective potential

Ψ(θ) = Ψ0(θ) +
∞∑

m=1

[Ψcm(θ) cos(mχ) + Ψsm(θ) sin(mχ)] (45)

will have terms that depend only on the corresponding multipole of the surface
density, ∇2Ψcm(θ) cos(mχ) = 2κcm(θ) cos(mχ). The monopole of the potential
is simply

Ψ0(θ) = 2 log(θ)
∫ θ

0

uduκ0(u) + 2
∫ ∞

θ

udu log(u)κ(u) (46)

and its derivative is the bend angle for a circular lens,

α0(θ) =
dΨ0

dθ
=

2
θ

∫ θ

0

uduκ0(u), (47)

just as we derived earlier (3). The higher order multipoles are no more com-
plicated, with
(
Ψcm(θ)
Ψsm(θ)

)
= − 1

mθm

∫ θ

0

u1+mdu

(
κcm(u)
κsm(u)

)
− θm

m

∫ ∞

θ

u1−mdu

(
κcm(u)
κsm(u)

)
.

(48)
The angular multipoles are always composed of two parts. There is an interior
pole Ψcm,int(θ) due to the multipole surface density interior to θ (the integral
from 0 < u < θ) and an exterior pole Ψcm,ext(θ) due to the multipole sur-
face density exterior to θ (the integral from θ < u < ∞). The higher order
multipoles produce deflections in both the radial

αcm,rad =
d

dθ
[Ψcm cos(mχ)] =

dΨcm

dθ
cos(mχ), (49)

and tangential

αcm,tan =
1
θ

d

dχ
[Ψcm cos(mχ)] = −m

θ
Ψcm sin(mχ) (50)

directions, where the radial deflection depends on the derivative of Ψcm and the
tangential deflection depends only on Ψcm. This may seem rather formal, but
the multipole expansion provides the basis for understanding which aspects of
mass distributions will matter for lens models. Obviously it is the lowest order
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angular multipoles which are most important. The most common angular term
added to lens models is the external shear

Ψ2,ext =
1
2
γcθ

2 cos 2(χ− χγ) +
1
2
γsθ

2 sin 2(χ− χγ) (51)

with dimensionless amplitudes γc and γs and axis χγ . The external (tidal)
shear and any accompanying mean convergence are the lowest order pertur-
bations from any object near the lens that have measurable effects on a grav-
itational lens (see (26)). While models usually consider only external (tidal)
shears where these coefficients are constants, in reality γc, γs and χγ are func-
tions of radius (i.e. (48)). Along with the external shear, there is an internal
shear

Ψ2,int =
1
2
Γ1

〈θ〉4
θ2

cos 2(χ− χΓ ) +
1
2
Γ2

〈θ〉4
θ2

sin 2(χ− χΓ ). (52)

due to the quadrupole moment of the mass interior to a given radius. We
introduce the mean radius of the lensed images 〈θ〉 to make Γ1 and Γ2 dimen-
sionless with magnitudes that can be easily compared to the external shear
amplitudes γ1 and γ2. Arguably the critical radius of the lens is a better phys-
ical choice, but the mean image radius will be close to the critical radius and
using it avoids any trivial covariances between the internal shear strength and
the monopole mass. Usually the internal quadrupole is added as part of an
ellipsoidal model for the central lens galaxy, but it is useful in analytic studies
to consider it separately.

4.1 Common Models for the Monopole

Most attention in modeling lenses focuses on the monopole or radial mass
distribution of the lenses. Unfortunately, much of the lensing literature uses an
almost impenetrable array of ghastly non-standard acronyms to describe the
mass models even though many of them are identical to well-known families of
density distributions used in stellar dynamics. Here we summarize the radial
mass distributions which are most commonly used and will keep reappearing
in the remainder of Part 2.

The simplest possible choice for the mass distribution is to simply trace
the light. The standard model for early-type galaxies or the bulges of spiral
galaxies is the de Vaucouleurs (1948) profile with surface density

Σ(R) = Ie exp
[
−7.67

[
(R/Re)

1/4 − 1
]]
, (53)

where the effective radius Re encompasses half the total mass (or light) of
the profile. Although the central density of a de Vaucouleurs model is finite,
it actually acts like a rather cuspy density distribution and will generally fit
the early-type lens data with no risk of producing a detectable central image
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(e.g. Lehár et al. 2000; Keeton 2003a). The simplest model for a disk galaxy
is an exponential disk,

Σ(R) = I0 exp [−R/Rd] , (54)

where Rd is the disk scale length. An exponential disk by itself is rarely a
viable lens model because it has so little density contrast between the cen-
ter and the typical radii of images that detectable central images are almost
always predicted but not observed. Some additional component, either a de
Vaucouleurs bulge or a cuspy dark matter halo, is always required. This makes
spiral galaxy lens models difficult because they generically require two stellar
components (a bulge and a disk) and a dark matter halo, while the photomet-
ric data are rarely good enough to constrain the two stellar components (e.g.
Maller, Flores and Primack 1997; Koopmans et al. 1998; Maller et al. 2000;
Trott and Webster 2002; Winn, Hall and Schechter 2003c). Since spiral lenses
are already relatively rare, and spiral lens galaxies with good photometry are
rarer still, less attention has been given to these systems. The de Vaucouleurs
and exponential disk models are examples of Sersic (1968) profiles

Σ(R) = I0 exp
[
−bn

[
(R/Re(n))1/n

]]
, (55)

where the effective radius Re(n) is defined to encompass half the light and
n = 4 is a de Vaucouleurs model and n = 1 is an exponential disk. These
profiles have not been used as yet for the study of lenses except for some quasar
host galaxy models (Sect. 10). The de Vaucouleurs model can be approximated
(or the reverse) by the Hernquist (1990)model with the 3D density distribution

ρ(r) =
M

πr

a

(a+ r)3
(56)

and a � 0.55Re if matched to a de Vaucouleurs model. For lensing purposes,
the Hernquist model has one major problem. Its ρ ∝ 1/r central density cusp
is shallower than the effective cusp of a de Vaucouleurs model, so Hernquist
models tend to predict detectable central images even when the matching de
Vaucouleurs model would not. As a result, the Hernquist model is more often
used as a surrogate for dynamical normalization of the de Vaucouleurs model
than as an actual lens model (see below).

Theoretical models for lenses started with simple, softened power laws of
the form

κ(R) ∝
(
R2 + s2

)−(n−1)/2 → R1−n (57)

in the limit where there is no core radius. We are using these simple power
law lenses in all our examples (see Sect. 3). These models include many well
known stellar dynamical models such as the singular isothermal sphere (SIS,
n = 2, s = 0), the modified Hubble profile (n = 3) and the Plummer model
(n = 5). Since we only see the projected mass, these power laws are also related
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to common models for infinitely thin disks. The Mestel (1963) disk (n = 2,
s = 0) is the disk that produces a flat rotation curve, and the Kuzmin (1956)
disk (n = 3) can be used to mimic the rising and then falling rotation curve
of an exponential disk. The softened power-law models have generally fallen
out of favor other than as simple models for some of the visible components
of lenses because the strong evidence for stellar and dark matter cusps makes
models with core radii physically unrealistic. While ellipsoidal versions of these
models are not available in useful form, there are fast series expansion methods
for numerical models (Chae, Khersonsky and Turnshek 1998b; Barkana 1998).

Most “modern” discussions of galaxy density distributions are based on
sub-cases of the density distribution

ρ(r) ∝ 1
rn

1

(aα + rα)(m−n)/α
, (58)

which has a central density cusp with ρ ∝ r−n, asymptotically declines as
ρ ∝ r−m and has a break in the profile near r � a whose shape depends on
α (e.g. Zhao 1997). The most common cases are the Hernquist model (n = 1,
m = 4, α = 1) mentioned above, the Jaffe (1983) model (n = 2, m = 4,
α = 1), the NFW (Navarro, Frenk and White 1996) model (n = 1, m = 3,
α = 1) and the Moore et al. (1998) model (n = 3/2, m = 3, α = 1). We can
view the power-law models either as the limit n → 0 and α = 2, or we could
generalize the r−n term to (r2 + s2)−n/2 and consider only regions with r and
s � a. Projections of these models are similar to surface density distributions
of the form

κ(R) ∝ 1
Rn−1

1

(aα +Rα)(m−n)/α
(59)

(although the definition of the break radius a may change) with the exception
of the limit n → 1 where the projection of a 3D density cusp ρ ∝ 1/r produces
surface density terms κ ∝ lnR that cannot be reproduced by the broken
surface density power law. This surface density model is sometimes called the
Nuker law (e.g. Byun et al. 1996). A particularly useful case for lensing is
the pseudo-Jaffe model with n = 2, m = 4 and α = 2 (where the normal Jaffe
model has α = 1) as the only example of a broken power law with simple
analytic deflections even when ellipsoidal because the density distribution is
the difference between two isothermal ellipsoids (see (41)). These cuspy models
also allow fast approximate solutions for their ellipsoidal counterparts (see
Chae 2002).

The most theoretically important of these cusped profiles is probably the
NFW profile (Navarro et al. 1996) because it is the standard model for dark
matter halos. Since it is such a common model, it is worth discussing it in a
little more detail, particularly its peculiar normalization. The NFW profile is
normalized by the mass Mvir inside the virial radius rvir, with

ρNFW (r) =
Mvir

4πf(c)
1

r(r + a)2
and MNFW (< r) =

f(r/rvir)
f(c)

, (60)
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where f(c) = ln(1 + c) − c/(1 + c) and the concentration c = rvir/a ∼ 5 for
clusters and c ∼ 10 for galaxies. The concentration is a function of mass whose
scaling is determined from N-body simulations. A typical scaling for a halo at
redshift z in an ΩM = 0.3 flat cosmological models is (Bullock et al. 2001a,b)

c(M) =
9

1 + z

(
Mvir

8 × 1012hM�

)−0.14

(61)

with a dispersion in log c of σlog(c) � 0.18 dex. Because gravitational lensing
is very sensitive to the central density of the lens, including the scatter in the
concentration is quantitatively important for lensing by NFW halos (Keeton
2001a,b). The virial mass and radius are related and determined by the over-
density Δvir(z) required for a halo to collapse given the cosmological model
and the redshift. This can be approximated by

Mvir =
4π
3
Δvir(z)ρu(z)r3vir � 0.23 × 1012h

(
(1 + z)rvir

100h−1kpc

)3(
ΩMΔvir

200

)
M�,

(62)
where ρu(z) = 3H2

0ΩM (1+z)3/8πG is the mean matter density when the halo
forms and Δvir � (18π2 +82x−39x2)/Ω(z) with x = Ω−1 is the overdensity
needed for a halo to collapse. There are differences in normalizations between
authors and with changes in the central cusp exponent γ, but models of this
type are what we presently expect for the structure of dark matter halos
around galaxies.

For most lenses, HST imaging allows us to measure the spatial distribution
of the stars, thereby providing us with a model for the distribution of stellar
mass with only the stellar mass-to-light ratio as a parameter. For present pur-
poses, gradients in the stellar mass-to-light ratio are unimportant compared
to the uncertainties arising from the dark matter. Unless we are prepared to
abandon the entire paradigm for modern cosmology, the luminous galaxy is
embedded in a dark matter halo and we must decide how to model the overall
mass distribution. The most common approach, as suggested by the rich vari-
ety of mass profiles we introduced in Sect. 4.1, is to assume a parametric form
for the total mass distribution rather than attempting to decompose it into
luminous and dark components. The alternative is to try to embed the stellar
component in a dark matter halo. Operationally, doing so is trivial – the lens
is simply modeled as the sum of two mass components. However, there are
theoretical models for how CDM halos should be combined with the stellar
component.

Most non-gravitational lensing applications focus on embedding disk galax-
ies in halos because angular momentum conservation provides a means of es-
timating a baryonic scale length (e.g. Mo, Mao and White 1998). The spin
parameter of the halo sets the angular momentum of the baryons, and the
final disk galaxy is defined by the exponential disk with the same angular mo-
mentum. As the baryons become more centrally concentrated, they pull the
dark matter inwards as well through a process known as adiabatic contraction
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(Blumenthal et al. 1986). The advantage of this approach, which in lensing
has been used only by Kochanek and White (2001), is that it allows a full ab
initio calculation of lens statistical properties when combined with a model
for the cooling of the baryons (see Sect. 7). It has the major disadvantage that
most lens galaxies are early-type galaxies rather than spirals, and that there
is no analog of the spin parameter and angular momentum conservation to set
the scale length of the stellar component in a model for an early-type galaxy.

Models of early-type galaxies embedded in CDM halos have to start with
an empirical estimate of the stellar effective radius. In models of individual
lenses this is a measured property of the lens galaxy (e.g. Rusin et al. 2003a,b;
Rusin and Kochanek 2005 or Koopmans and Treu 2002; Kochanek 2003a,b,c).
Statistical models must use a model for the scaling of the effective radius with
luminosity or other observable parameters of early-type galaxies (e.g. Keeton
2001a,b). From the luminosity, a mass-to-light ratio is used to estimate the
stellar mass. If all baryons have cooled and been turned into stars, then the
stellar mass provides the total baryonic mass of the halo, otherwise the stellar
mass sets a lower bound on the baryonic mass. Combining the baryonic mass
with an estimate of the baryonic mass fraction yields the total halo mass to
be fed into the model for the CDM halo.

In general, there is no convincing evidence favoring either approach – for
the regions over which the mass distributions are constrained by the data,
both approaches will agree on the overall mass distribution. However, there
can be broad degeneracies in how the total mass distribution is decomposed
into luminous and dark components (see Sect. 4.6).

4.2 The Effective Single Screen Lens

Throughout these notes we will treat lenses as if all the lens components lay
at a single redshift (“the single screen approximation”). The lens equations
for handling multiple deflection screens (e.g. Blandford and Narayan 1986;
Kovner 1987b; Barkana 1996) are known but little used except for numerical
studies (e.g. Kochanek and Apostolakis 1988; Möller and Blain 2001) in large
part because few lenses require multiple lens galaxies at different redshifts
with the exception of B2114+022 (Chae, Mao and Augusto 2001). In fact, we
are not being as cavalier in making this approximation as it may seem.

The vast majority of strong lenses consist of a single lens galaxy perturbed
by other objects. We can divide these objects into nearby objects, where a
single screen is clearly appropriate, and objects distributed along the line of
site for which a single screen may be inappropriate. Because the correlation
function is so strong on small scales, the perturbations are dominated by
objects within a correlation length of the lens galaxy (e.g. Keeton, Kochanek
and Seljak 1997; Holder and Schechter 2003). The key to the relative safety of
the single screen model is that weak perturbations from objects along the line
of site, in the sense that in a multi-screen lens model they could be treated as
a convergence and a shear, can be reduced to a single “effective” lens plane
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in which the true amplitudes of the convergence and shear are rescaled by
distance ratios to convert them from their true redshifts to the redshift of
the single screen (Kovner 1987b; Barkana 1996). The lens equation on the
effective single screen takes the form

β = (I + FOS) θ − (I + FLS) α [(I + FOL) θ] , (63)

where FOS , FLS and FOL describe the shear and convergence due to pertur-
bations between the observer and the source, the lens and the source and the
observer and the lens respectively. For statistical calculations this can be sim-
plified still further by making the coordinate transformation θ′ = (I +FOL)θ
and β′ = (I + FLS)β to leave a lens equation identical to a single screen lens

β′ = (I + Fe)θ′ − α [θ′] (64)

in an effective convergence and shear of Fe = FOL +FLS −FOS (to linear or-
der). In practice it will usually be safe to neglect the differences between (63)
and (64) because the shearing terms affecting the deflections in (63) are easily
mimicked by modest changes in the ellipticity and orientation of the primary
lens. The rms amplitudes of these perturbations depend on the cosmological
model and the amplitude of the non-linear power spectrum, but the general
scaling is that the perturbations grow as D3/2

s with source redshift, and in-
crease for larger σ8 and ΩM as shown in Fig. 19 from Keeton et al. (1997).
The importance of these effects is very similar to concerns about the effects
of lenses along the line-of-sight on the brightness of high redshift supernova
being used to estimate the cosmological model (e.g. Dalal et al. 2003).

4.3 Constraining the Monopole

The most frustrating aspect of lens modeling is that it is very difficult to
constrain the monopole. If we take a simple lens and fit it with any of the
parametric models from the previous sub-section it will be possible to obtain
a good fit provided the central surface density of the model is high enough
to avoid the formation of a central image. As usual, it is simplest to begin
understanding the problem with a circular, two-image lens whose images lie at
radii θA and θB from the lens center (Fig. 20). The lens equation (4) constrains
the deflections so that the two images correspond to the same source position,

β = θA − α(θA) = −θB + α(θB), (65)

where the sign changes appear because the images are on opposite sides of
the lens. Recall that for the power-law lens model, α(θ) = bn−1θ2−n (9), so
we can easily solve the constraint equation to determine the Einstein radius
of the lens,

b =
[

θA + θB

θ2−n
A + θ2−n

B

]1/(n−1)

(66)



Part 2: Strong Gravitational Lensing 131

Fig. 19. Dependence of the shear generated by other objects along the line-of-sight
for both linear (light lines) and non-linear (heavy lines) power spectra. (a) Shows
the logarithmic contribution to the rms effective shear for a source at redshift zs = 3
as a function of wave vector k. (b) Shows the dependence on σ8 for a fixed power
spectrum shape ΩMh = 0.25. (c) Shows the dependence on the shape ΩMh with
σ8 = 0.6 for ΩM = 1 and σ8 = 1.0 for ΩM < 1. (d) Shows the variation in the shear
with source redshift for the models in (c) with ΩMh = 0.25

in terms of the image positions. In the limit of an SIS (n = 2) the Einstein ra-
dius is the arithmetic mean, b = (θA+θB)/2, and in the limit of a point source
(n → 3), it is the geometric mean, b = (θAθB)1/2, of the image radii. More
generally, for any deflection profile bf(θ), the two images simply determine
the mass scale b = (θA + θB)/(f(θA) + f(θB)).

There are two important lessons here. First, the location of the tangential
critical line is determined fairly accurately independent of the mass profile.
We may only be able to determine the mass scale, but it is the most accurate
measurement of galaxy masses available to astronomy. Second, it is going to
be very difficult to determine radial mass distributions. In this example there
is a perfect degeneracy between the exact location of the tangential critical
line b and the exponent n. In theory, this is broken by the flux ratio of the
images. However, a simple two-image lens has too few constraints even with
perfectly measured flux ratios because a realistic lens model must also include
some freedom in the angular structure of the lens. For a simple four-image
lens, there begin to be enough constraints but the images all have similar
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Fig. 20. A schematic diagram of a two-image lens. The lens galaxy lies at the origin
with two images A and B at radii θA and θB from the lens center. The images define
an annulus of average radius 〈θ〉 = (θA + θB)/2 and width δθ = θA − θB , and they
subtend an angle ΔχAB relative to the lens center. For a circular lens ΔχAB = 180◦

by symmetry

radii, making the flux ratios relatively insensitive to changes in the monopole.
Combined with the systematic uncertainties in flux ratios, they are not useful
for this purpose.

This example also leads to the major misapprehension about lens models
and radial mass distributions, in that the constraints appear to lead to a
degeneracy related to the global structure of the potential (i.e. the exponent
n). This is not correct. The degeneracy is a purely local one that depends only
on the structure of the lens in the annulus defined by the images, θB < θ < θA,
as shown in Fig. 20. To see this we will rewrite the expression for the bend
angle (3) as

α(θ) =
2
θ

[∫ θB

0

uduκ(u) +
∫ θ

θB

uduκ(u)

]

=
1
θ

[
b2B + (θ2 − θ2

B)〈κ〉(θ, θB)
]
,

(67)
where b2B = 2

∫ θB

0
uduκ(u) is the Einstein radius of the total mass interior to

image B, and

〈κ〉(θ, θB) =
2

θ2 − θ2
B

∫ θ

θB

uduκ(u) (68)

is the mean surface density in the annulus θB < u < θ. If we now solve the
constraint (65) again, we find that
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b2B = θAθB − 〈κ〉ABθB(θA − θB), (69)

where 〈κ〉AB = 〈κ〉(θA, θB) is the mean density in the annulus θB < θ <
θA between the images. Thus, there is a degeneracy between the total mass
interior to image B and the mean surface density (mass) between the two
images. There is no dependence on the distribution of the mass interior to θB,
the distribution of mass between the two images, or on either the amount or
distribution of mass exterior to θA. This is Gauss’ law for gravitational lens
models.

If we normalize the mass scale at any point in the interior of the annulus
then the result will depend on the distribution of the mass simply because the
mass must be artificially divided. For example, suppose we model the surface
density locally as a power law κ ∝ θ1−n with a mean surface density 〈κ〉 in
the annulus θB < θ < θA between the images. The mass inside the mean
image radius 〈θ〉 is

b2〈θ〉 = θAθB (1 − κ0)

+ δθ2〈κ〉
[
n

4
+
(
δθ

〈θ〉

)2 (4 − n)(2 − n)(1 − n)
192

+O

((
δθ

〈θ〉

)4
)]

,

(70)

where we have expanded the result in the ratio δθ/〈θ〉 (in fact, the result as
shown is exact for n = 2/3, 1, 2, 4 and 5). We included in this result an
additional, global convergence κ0 so that we can contrast the local degen-
eracies due to the distribution of matter between the images with the global
degeneracies produced by a infinite mass sheet. The leading term θAθB is the
Einstein radius expected for a point mass lens (65). While the total enclosed
mass (θAθB) is fixed, the mass associated with the lens galaxy b2〈θ〉 must be
modified in the presence of a global convergence by the usual 1 − κ0 factor
created by the mass sheet degeneracy (Falco, Gorenstein and Shapiro 1985).
The structure of the lens in the annulus leads to fractional corrections to the
mass of order (δθ/〈θ〉)2 that are proportional to n〈κ〉 to lowest order.

Only if you have additional images inside the annulus can you begin to
constrain the structure of the density in the annulus. The constraint is not,
unfortunately, a simple constraint on the density. Suppose that we see an
additional (pair) of images on the Einstein ring at θ0, with θB < θ0 < θA.
This case is simpler than the general case because it divides our annulus into
two sub-annuli (from θB to θ0 and from θ0 to θA) rather than three. Since
we put the extra image on the Einstein ring, we know that the mean surface
density interior to θ0 is unity (11). The A and B images then constrain a ratio

1 − 〈κ〉B0

1 − 〈κ〉A0
=
θB

θA

θ2
A − θ2

0

θ2
0 − θ2

B

� θA − θ0
θ0 − θB

[
1 − θA − θB

2θ0
· · ·
]

(71)

of the average surface densities between the Einstein ring and image B (〈κ〉B0)
and the Einstein ring and image A (〈κ〉A0). Since a physical distribution must
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have 0 < 〈κ〉A0 < 〈κ〉B0, the surface density in the inner sub-annulus must
satisfy

θA + θB

θA

θ2
0 − θAθB

θ2
0 − θ2

B

< 〈κ〉B0 < 1, (72)

where the lower (upper) bound is found when the density in the outer sub-
annulus is zero (when 〈κ〉B0 = 〈κ〉A0). The term θ2

0 − θAθB is the difference
between the measured critical radius θ0 and the critical radius implied by
the other two images for a lens with no density in the annulus (e.g. a point
mass), (θAθB)1/2. Suppose we actually have images formed by an SIS, so
θA = θ0(1 + x) and θB = θ0(1 − x) with 0 < x = β/θ0 < 1, then the lower
bound on the density in the inner sub-annulus is

〈κ〉B0 >
2x

(2 − x)(1 + x)
(73)

and the fractional uncertainly in the surface density is unity for images near
the Einstein ring (x → 0) and then steadily diminishes as the A and B images
are more asymmetric. If you want to constrain the monopole, the more asym-
metric the configuration the better. This rule becomes still more important
with the introduction of angular structure.

Figure 21 illustrates these issues. We arbitrarily picked a model consisting
of an SIS lens with two sources. One source is close to the origin and produces
images at θA = 1.′′1 and θB = 0.′′9. The other source is farther from the
origin with images at θA = 1.′′5 and θB = 0.′′5. We then modeled the lens
with either a softened power law (57) or a three-dimensional cusp (58). We
did not worry about the formation of additional images when the core radius
becomes too large or the central cusp is too shallow – this would rule out
models with very large core radii or shallow central cusps. If there were only
a single source, either of these models can fit the data for any values of the
parameters. Once, however, there are two sources, most of parameter space
is ruled out except for degenerate tracks that look very different for the two
mass models. Along these tracks, the models satisfy the additional constraint
on the surface density given by (71). The first point to make about Fig. 21
is the importance of carefully defining parameters. The input SIS model has
very different parameters for the two mass models – while the exponent n = 2
is the same in both cases, the SIS model is the limit s → 0 for the core radius
in the softened power law, but it is the limit a → ∞ for the break radius
in the cusp model. Similarly, models with an inner cusp n = 0 will closely
resemble power law models whose exponent n matches the outer exponent m
of the cuspy models. Our failure to explain these similarities is one reason why
lens modeling seems so confusing. The second point to make about Fig. 21 is
that the deflection profiles implied by these models are fairly similar over the
annulus bounded by the images. Outside the annulus, particularly at smaller
radii, they start to show very large fractional differences. Only if we were to
add a third set of multiple images or measure a time delay with a known value
of H0 would the parameter degeneracy begin to be broken.
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Fig. 21. Softened power law and cusped model fits to the images produced by
an SIS lens with Einstein radius b = 1.′′0 and two source components located 0.′′1
and 0.′′5 from the lens center. In the top panel, the contours show the regions with
astrometric fit residuals per image of 0.′′003 and 0.′′010. Models with m = 3 cusps
so closely overly the m = 4 models that their error contours were not plotted.
The bottom panel shows the deflection profiles of the best models at half-integer
increments in the exponent n. The SIS model has a constant deflection, and the
power-law and cusp models approach it in a sequence of slowly falling deflection
profiles. All models agree with the SIS Einstein radius at r = 1.′′0. The positions of
the images are indicated by the vertical bars
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These general results suggest that studies of how lenses constrain the
monopole need the ability to simultaneously vary the mass scale, the sur-
face density of the annulus and possibly the slope of the density profile in
the annulus to have the full range of freedom permitted by the data. Most
parametric studies constraining the monopole have had two parameters, ad-
justing the mass scale and a correlated combination of the surface density
and slope (e.g. Kochanek 1995a,b; Impey et al. 1998; Chae, Turnshek and
Khersonsky 1998a, Barkana et al. 1999; Chae 1999; Cohn et al. 2001; Muñoz
et al. 2001; Wucknitz et al. 2004), although there are exceptions using models
with additional degrees of freedom (e.g. Bernstein and Fischer 1999; Keeton
et al. 2000b; Trott and Webster 2002; Winn, Rusin and Kochanek 2003a).
This limitation is probably not a major handicap, because realistic density
profiles show a rather limited range of local logarithmic slopes.

4.4 The Angular Structure of Lenses

Assuming you have identified all the halos needed to model a particular lens,
there are three sources of angular structure in the potential. The first source
is the shape of the luminous lens galaxy, the second source is the dark matter
in the halo of the lens, and the third source is perturbations from nearby
objects or objects along the line-of-sight. Of these, the only one which is
easily normalized is the contribution from the stars in the lens galaxy, since
it must be tightly connected to the monopole deflection of the stars. The
observed axis ratios of early-type galaxies show a deficit of round galaxies,
a plateau for axis ratios from q ∼ 0.9 to q ∼ 0.5 and then a sharp decline
beyond q ∼ 0.5 (e.g. Khairul and Ryden 2002). Not surprisingly, the true
elliptical galaxies are rounder than the lenticular (S0) galaxies even if both
are grouped together as early-type galaxies. In three dimensions, the stellar
distributions are probably close to oblate with very modest triaxialities (e.g.
Franx et al. 1991). Theoretical models of galaxy formation predict ellipticities
and triaxialities larger than observed for luminous galaxies (Dubinski 1992,
1994; Warren et al. 1992; Kazantzidis et al. 2004). Local estimates of the shape
of dark matter halos are very limited (e.g. Olling and Merrifield 2001; Buote
et al. 2002). Stellar isophotes also show deviations from perfect ellipses (e.g.
Bender et al. 1989; Rest et al. 2001) and the deviations of simulated halos from
ellipses have a similar amplitude (Heyl et al. 1994; Burkert and Naab 2003).

It is worth considering two examples to understand the relative importance
of the higher order multipoles of a lens. The first is the singular isothermal
ellipsoid (SIE) introduced in Sect. 3 (38-40). Let the major axis of the model
lie on the θ1 axis, in which case only the cos(mχ) multipoles with m = 2, 4, ...
are non-zero. All non-zero poles also have the same radial dependence, with
κcm = Am/θ and Ψcm = −2Amθ/(m2−1). The ratio of the internal to the ex-
ternal multipole depends only on the index of the multipole, Ψcm,int/Ψcm,ext =
(m− 1)/(m+ 1). Note, in particular, that the quadrupole moment of an SIE
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is dominated by the matter outside any given radius, with an internal quadru-
pole fraction of

fint =
Ψc2,int

Ψc2
=

1
4
. (74)

For lenses dominated by dark matter halos that have roughly flat global rotation
curves, most of the quadrupole moment is generated outside the Einstein ring
of the lens (i.e. by the halo !). This will hold provided any halo truncation
radius is large compared to the Einstein ring radius. The tangential deflection
is larger than the radial deflection, with |αcm,rad/αcm,tan| = 1/m. The final
question is the relative amplitudes between the poles. The ratio of the angular
deflection from the m = 2 quadrupole to the radial deflection of the monopole
is

αc2,tan

α0,rad
� ε
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ε2 · · ·

]
, (75)

while the ratio for the m = 4 quadrupole is

αc4,tan

α0,rad
� ε2
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19
24
ε2 · · ·

]
, (76)

where the axis ratio of the ellipsoid is q = 1 − ε. Each higher order multipole
has an amplitude Ψm ∝ εm/2 to leading order.

The relative importance of the higher order poles can be assessed by com-
puting the deflections for a typical lens with the monopole deflection (essen-
tially the Einstein radius) fixed to be one arc second. Using the leading order
scaling of the power-series, but setting the numerical value to be exact for an
axis ratio q = 1/2, the angular deflection from the quadrupole is 0.′′46ε and
that from the m = 4 pole is 0.′′09ε2, while the radial deflections will be smaller
by a factors of 2 and 4 respectively. Since typical astrometric errors are of
order 0.′′005, the quadrupole is quantitatively important for essentially any
ellipticity while the m = 4 pole becomes quantitatively important only for
q <∼ 0.75 (and the m = 6 pole becomes quantitatively important for q <∼ 0.50).

In Fig. 22 we compare the SIE to ellipsoidal de Vaucouleurs and NFW
models. Unlike the SIE, these models are not scale free, so the multipoles
depend on the distance from the lens center in units of the major axis scale
length of the lens, Rmajor. The behavior of the de Vaucouleurs model will
be typical of any ellipsoidal mass distribution that is more centrally concen-
trated than an SIE. Although the de Vaucouleurs model produces angular
deflections similar to those of an SIE on small scales (for the same axis ratio),
these are beginning to decay rapidly at the radii where we see lensed images
(1–2Rmajor) because most of the mass is interior to the image positions and
the amplitudes of the higher order multipoles decay faster with radius than the
monopole (see (48)). Similarly, as more of the mass lies at smaller radii,
the quadrupole becomes dominated by the internal quadrupole. The NFW
model has a somewhat different behavior because on small scales it is less cen-
trally concentrated than an SIE (a ρ ∝ 1/r central density cusp rather than
∝ 1/r2). It produces a somewhat bigger quadrupole for a given axis ratio,
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Fig. 22. Behavior of the angular multipoles for the de Vaucouleurs (solid), SIE
(dashed) and NFW (dotted) models with axis ratios of either q = 0.75 (top) or
q = 0.5 (bottom) as a function of radius from the lens center in units of the lens
major axis scale Rmajor. For each axis ratio, the lower panel shows the ratio of the
maximum angular deflections produced by the quadrupole (m = 2) and the m = 4
pole relative to the deflection produced by the monopole (m = 0). The upper panel
shows the fraction of the quadrupole generated by the mass interior to each radius
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and an even larger fraction of that quadrupole is generated on large scales.
In a “standard” dark matter halo model, the region with θ < Rmajor is also
where we see the lensed images. On larger scales, the NFW profile is more
centrally concentrated than the SIE, so the quadrupole begins to decay and
becomes dominated by the internal component.

It is unlikely that mass distributions are true ellipsoids producing only even
poles (m = 2, 4, . . .) with no twisting of the axes with radius. For model fits
we need to consider the likely amplitude of these deviations and the ability of
standard terms to absorb and mask their presence. It is clear from Fig. 22 that
the amplitude of any additional terms must be of order the m = 4 deflections
expected for an ellipsoid for them to be important. Here we illustrate the
issues with the first few possible terms.

A dipole moment (m = 1) corresponds to making the galaxy lopsided with
more mass on one side of the lens center than the other. Lopsidedness is not
rare in disk galaxies (∼30% at large radii, Zaritsky and Rix 1997), but is little
discussed (and hence presumably small) for early-type galaxies. Certainly in
the CASTLES photometry of lens galaxies we never see significant dipole
residuals. It is difficult (impossible) to have an equilibrium system supported
by random stellar motions with a dipole moment because the resulting forces
will tend to eliminate the dipole. Similar considerations make it difficult to
have a dark matter halo offset from the luminous galaxy. Only disks, which are
supported by ordered rather than random motion, permit relatively long-lived
lopsided structures. Where a small dipole exists, it will have little effect on
the lens models unless the position of the lens galaxy is imposed as a stringent
constraint. The reason is that a dipole adds terms to the effective potential
of the form θ1G(θ) whose leading terms are degenerate with a change in the
unknown source position.

Perturbations to the quadrupole (relative to an ellipsoid) arise from vari-
ations in the ellipticity or axis ratio with radius. Since realistic lens models
require an independent external shear simply to model the local environment,
it will generally be very difficult to detect these types of perturbations or
for these types of perturbations to significantly modify any conclusions. In
essence, the amplitude and orientation of the external shear can capture most
of their effects. Their actual amplitude is easily derived from perturbations.
For example, if there is an isophote twist of Δχ between the region inside
the Einstein ring and outside the Einstein ring, the fractional perturbations
to the quadrupole will be of order Δχ, or approximately εΔχ/3 of the mono-
pole – independent of the ability of the external shear to mimic the twist,
the actual amplitude of the perturbation is approaching the typical measure-
ment precision unless the twist is very large. Only in Q0957+561 have models
found reasonably clear evidence for an effect arising from isophotal twists
and ellipticity gradients, but both distortions are unusually large in this sys-
tem (Keeton et al. 2000a). In general, in the CASTLES photometry of lens
galaxies, deviations from simple ellipsoidal models are rare.
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Locally we observe that the isophotes of elliptical galaxies are not perfect
ellipses (e.g. Bender et al. 1989; Rest et al. 2001) and simulated halos show
deviations of similar amplitude (Heyl et al. 1994; Burkert and Naab 2003).
For lensing calculations it is useful to characterize these perturbations by a
contribution to the lens potential and surface density of

Ψ =
εm
m
θ cosm(χ− χm) and κm =

εm
θ

1 −m2

m
cosm(χ− χm), (77)

respectively where the amplitude of the term is related to the usual isophote
parameter am = εm|1 −m2|/mb for a lens with Einstein radius b. A typical
early-type galaxy might have |a4| ∼ 0.01, so their fractional effect on the
deflections, |ε4|/b ∼ |a4|/4 ∼ 0.003, will be comparable to the astrometric
measurement accuracy.

4.5 Constraining Angular Structure

The angular structure of lenses is usually simply viewed as an obstacle to
understanding the monopole. This is a serious mistake. The reason angular
structure is generally ignored is that the ability to accurately constrain the
angular structure of the gravitational field is nearly unique to gravitational
lensing. Since we have not emphasized the ability of lenses to measure angular
structure and other methods cannot do so very accurately, there has been little
theoretical work on the angular structure of galaxies with dark matter. Both
theoretical studies of halos and modelers of gravitational lenses need to pay
more attention to the angular structure of the gravitational potential.

We start by analyzing a simple two-image lens using our non-parametric
model of the monopole (67) in an external shear (51). The two images are
located at θA = θA(cosχA, sinχA), and θB = θB(cosχB , sinχB) as illustrated
in Fig. 20. To illustrate the similarities and differences between shear and
convergence, we will also include a global convergence κ0 in the model. This
corresponds to adding a term to the lens potential of the form (1/2)κ0θ

2.
The model now has five parameters – two shear components, the mass and
surface density of the monopole model and the additional global convergence.
We have only two astrometric constraints, and so can solve for only two of the
five parameters. Since the enclosed mass is always an interesting parameter,
we can only solve for one of the two shear components. In general, we will find
that the amplitude of γc depends on the amplitude of γs. There is, however, a
special choice of the shear axis, χγ = (χA +χB)/2 + π/4, such that the shear
parameters become independent of each other. This allows us to determine
the “invariant” shear associated with the images,

γ1 =
(1 − κ0 − 〈κ〉AB) (θ2

A − θ2
B) sin(χA − χB)

Δθ2
, (78)

where Δθ = |θA − θB | is the image separation. The monopole mass and the
other shear component are degenerate,
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Several points are worth noting. First, the amplitude of the invariant shear γ1

has the same degeneracy with the (local) surface density between the images
〈κ〉AB as it does with a global convergence κ0. More centrally concentrated
mass distributions with lower 〈κ〉AB require higher external shears to fit the
same data. Second, the other component γ2 introduces an uncertainty into
the enclosed mass, with a series of somewhat messy trade offs between b2B , γ1,
〈κ〉AB and κ0. As a practical matter, the shear does not lead to an astronom-
ically significant uncertainty in the mass, since γ2 <∼ 0.1 in all but the most
extreme situations.

The external shear is only one component of the quadrupole. There is also
an internal shear due to the mass interior to the images (52). The internal
and external shears differ in their “handedness”. For the same angular deflec-
tion (dΨ/dχ) they have opposite signs for the radial deflection (dΨ/dθ). The
solution for two images is much the same as for an external shear. There is
an invariant shear component, whose amplitude scales with 1 − κ0 − 〈κ〉AB

but whose orientation differs from that of the external shear solution. The
monopole mass b2B is degenerate with the γ2 shear component and the κ0

and 〈κ〉AB surface densities. The actual expressions are far too complex to be
illuminating. Figure 23 illustrates how the invariant shears combine to deter-
mine the overall structure of the quadrupole for the lens PG1115+080. For
each image pair there is a line of permitted shears because of the degeneracy
between the enclosed mass and the second shear component. The invariant
shear component is the shear at the point where the line passes closest to the
origin. If the quadrupole model is correct, the lines for all the image pairs will
cross at a point, while if it is incorrect they will not. PG1115+080 is clearly
going to be well modeled if the quadrupole is dominated by an external shear
and poorly modeled if it is dominated by an internal shear. This provides a
simple geometric argument for why full models of PG1115+080 are always
dominated by an external shear (e.g. Impey et al. 1998). A failure of the
curves to cross in both cases is primarily evidence for a mixture of external
and internal quadrupoles or the presence of other multipoles rather than for
a problem in the monopole mass distribution. In Fig. 23 we used an SIS for
the monopole. For a point mass monopole, the figure looks almost the same
provided we expand the scale – the invariant shear scales as 1 − 〈κ〉AB so in
going from a SIS with 1 − 〈κ〉AB � 1/2 to a point mass with 1 − 〈κ〉AB = 1
the shear will double.

This scaling of the quadrupole with the surface density of the monopole
provides an as yet unused approach to studying the monopole. Since the
mass enclosed by the Einstein radius is nearly constant, the more centrally
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Fig. 23. The invariant shears for the lens PG1115+080 modeled using either an
external (top) or an internal (bottom) quadrupole and an SIS monopole. Each possi-
ble image pair among the A1, A2, B and C images, constrains the quadrupole to lie
on the labeled line. The amplitude and orientation of each invariant shear is given
by the point where the corresponding line passes closest to the origin. Models of
PG1115+080 show that the quadrupole is dominated by external (tidal) shear. Here
we see that for the external quadrupole (left), the lines nearly cross at a point, so
the data are consistent with an almost pure external shear. For an internal quadru-
pole (right), the A2B and A2C image pairs require shear parameters completely
inconsistent with the other images
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concentrated constant mass-to-light (M/L) ratio models must have lower sur-
face mass densities near the images than the SIE model. As a result, they
will require quadrupole amplitudes that are nearly twice those of models like
the SIS with nearly flat rotation curves. Since the typical SIE model of a lens
has an ellipticity that is comparable to the typical ellipticities of the visible
galaxies, the more centrally concentrated monopole of a constant M/L model
requires an ellipticity much larger than the observed ellipticity of the lens
galaxy. The need to include an external tidal shear to represent the environ-
ment allows these models to produce acceptable fits, but the amplitudes of the
required external shears are inconsistent with expectations from weak lensing
(Part 3).

4.6 Model Fitting and the Mass Distribution of Lenses

Having outlined (in perhaps excruciating detail) how lenses constrain the
mass distribution, we turn to the problem of actually fitting data. These days
the simplest approach for a casual user is simply to download a modeling
package, in particular the lensmodel package (Keeton 2001a,b) at http://cfa-
www.harvard.edu/castles/, read the manual, try some experiments, and then
apply it intelligently (i.e. read the previous sections about what you can
extract and what you cannot !). Please publish results with a complete descrip-
tion of the models and the constraints using standard astronomical nomen-
clature.

In most cases we are interested in the problem of fitting the positions
θi of i = 1, ..., n images where the image positions have been measured with
accuracy σi. We may also know the positions and properties of one or more lens
galaxies. Time delay ratios also constrain lens models but sufficiently accurate
ratios are presently available for only one lens (B1608+656, Fassnacht et al.
2002), fitting them is already included in most packages, and they add no
new conceptual difficulties. Flux ratios constrain the lens model, but we are
so uncertain of their systematic uncertainties due to extinction in the ISM
of the lens galaxy, microlensing (Part 4) and the effects of substructure (see
Sect. 8) that we can never impose them with the accuracy needed to add a
significant constraint on the model.

The basic issue with lens modeling is whether or not to invert the lens
equations (“source plane” or “image plane” modeling). The lens equation
supplies the source position

βi = θi − α(θi,p) (80)

predicted by the observed image positions θi and the current model parame-
ters p. Particularly for parametric models it is easy to project the images on
to the source plane and then minimize the difference between the projected
source positions. This can be done with a χ2 fit statistic of the form

χ2
src =

∑

i

(
β − βi

σi

)2

, (81)
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where we treat the source position β as a model parameter. The astrometric
uncertainties σi are typically a few milli-arcseconds. Moreover, where VLBI
observations give significantly smaller uncertainties, they should be increased
to approximately 0.′′001–0.′′005 because low mass substructures in the lens
galaxy can produce systematic errors on this order (see Sect. 8). You can im-
pose astrometric constraints to no greater accuracy than the largest deflection
scales produced by lens components you are not including in your models. The
advantage of χ2

src is that it is fast and has excellent convergence properties.
The disadvantages are that it is wrong, cannot be used to compute parameter
uncertainties, and may lead to a model producing additional images that are
not actually observed.

The reason it is wrong and cannot be used to compute parameter errors
is that the uncertainty σi in the image positions does not have any meaning
on the source plane. This is easily understood if we Taylor expand the lens
equation near the projected source point βi corresponding to an image

β − βi = M−1
i (θ − θi), (82)

where M−1 is the inverse magnification tensor at the observed location of the
image. In the frame where the tensor is diagonal, we have that Δβ± = λ±Δθ±
so a positional error Δβ± on the source plane corresponds to a positional error
λ−1
± Δβ± on the image plane. Since the observed lensed images are almost

always magnified (usually λ+ = 1+κ+γ ∼ 1 and 0.5 > |λ− = 1+κ−γ| < 0.05)
there is always one direction in which small errors on the source plane are
significantly magnified when projected back onto the image plane. Hence, if
you find solutions with χ2

src ∼ Ndof where Ndof is the number of degrees
of freedom, you will have source plane uncertainties Δβ <∼ σi. However, the
actual errors on the image plane are μ = |M | larger and the χ2 on the image
plane is ∼ μ2Ndof and you in fact have a terrible fit.

If you assume that in any interesting model you are close to having a
good solution, then this Taylor expansion provides a means of using the easily
computed source plane positions to still get a quantitatively accurate fitting
statistic,

χ2
int =

∑

i

(β − βi) ·M2 · (β − βi)
σ2

i

(83)

in which the magnification tensor M is used to correct the error in the source
position to an error in the image position. This procedure will be approx-
imately correct provided the observed and model image positions are close
enough for the Taylor expansion to be valid. Finally, there is the exact sta-
tistic where for the model source position β you numerically solve the lens
equation to find the exact image positions θi(β) and then compute the good-
ness of fit on the image plane

χ2
img =

∑

i

(
θi(β) − θi

σi

)2

. (84)
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This will be exact even if the Taylor expansion of χ2
int is breaking down, and

if you find all solutions to the lens equations you can verify that the model
predicts no additional visible images. Unfortunately, using the exact χ2

img is
also a much slower numerical procedure.

As we discussed earlier, even though lens models provide the most accurate
mass normalizations in astronomy, they can constrain the mass distribution
only if the source is more complex than a single compact component. Here we
only show examples where there are multiple point-like components, deferring
discussions of models with extended source structure to Sect. 10. The most
spectacular example of a multi-component source is B1933+503 (Sykes et al.
1998, see Fig. 6) where a source consisting of a radio core and two radio lobes
has 10 lensed images because the core and one lobe are quadruply imaged
and the other lobe is doubly imaged. Since we have many images spread over
roughly a factor of two in radius, this lens should constrain the radial mass
distribution just as in our discussion for Sect. 4.3. Muñoz et al. (2001, also
see Cohn et al. 2001 for softened power law models) fitted this system with
cuspy models (55 with α = 2 and m = 4), varying the inner density slope
n = γ (ρ ∝ r−n) and the break radius a. Figure 24 shows the resulting χ2 as a
function of the parameters and Fig. 24 illustrates the range of the acceptable
monopole mass distributions – both are very similar to Fig. 21. The best fit is
for γ = 1.85 with an allowed range of 1.6 < γ < 2.0 that completely excludes
the shallow γ = 1 cusps of the Hernquist and NFW profiles and is marginally
consistent with the γ = 2 cusp of the SIS model. A second example, which
illustrates how the distribution of mass well outside the region with images has
little effect on the models are the Winn et al. (2003a,b,c) models of the three-
image lens PMNJ1632–0033 shown in Fig. 25. In these models the outer slope
η, with ρ ∝ r−η asymptotically, of the density was also explored but has little
effect on the results. Unless the break radius of the profile is interior to the B
image, the mass profile is required to be close to isothermal 1.89 < β < 1.93.

Unfortunately, systems like B1933+503 and PMNJ1632–0033 are a small
minority of lens systems. For most lenses, obtaining information on the radial
density profile requires some other information such as a dynamical measure-
ment (Sect. 4.9), a time delay measurement (Sect. 5) or a lensed extended
component of the source (Sect. 10). Even for these systems, it is important
to remember that the actual constraints on the density structure really only
apply over the range of radii spanned by the lensed images – the mass inte-
rior to the images is constrained but its distribution is not, while the mass
exterior to the images is completely unconstrained. This is not strictly true
when we include the angular structure of the gravitational field and the mass
distribution is quasi-ellipsoidal.

It is also important to keep some problems with parametric models in
mind. First, models that lack the degrees of freedom needed to describe the
actual mass distribution can be seriously in error. Second, models with too
many degrees of freedom can be nonsense. We can illustrate these two limi-
ting problems with the sad history of Q0957+561 for the first problem and
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Fig. 24. (Top) Goodness of fit χ2 for cuspy models of B1933+503 as a function
of the inner density exponent γ (ρ ∝ r−γ) and the profile break radius a. Models
with cusps significantly shallower or steeper than isothermal are ruled out, and
acceptable models near isothermal must have break radii outside the region with
the lensed images. (Bottom) The monopole deflections of the B1933+503 models for
the range of permitted cusp exponents γ. The points show the radii of the lensed
images, and the models only constrain the shape of the monopole in this region. The
monopole deflection is closely related to the square of the rotation curve. Note the
similarity to Fig. 21
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Fig. 25. (Left) Allowed parameters for cuspy models of PMNJ1632–0033 assuming
that image C is a true third image. Each panel shows the constraints on the inner
density cusp β (ρ ∝ r−β) and the break radius rb for three different asymptotic
density slopes ρ ∝ r−η. A Hernquist model has β = 1 and η = 4, an NFW model
has β = 1 and η = 3, and a pseudo-Jaffe model has β = 2 and η = 4. Unless
the break radius is placed interior to the B image, it is restricted to be close to
isothermal (β = 2)

attempts to explain anomalous flux ratios (see Sect. 8) with complex angular
structures in the density distribution for the dark matter.

Q0957+561, the first lens discovered (Walsh et al. 1979) and the first
lens with a well measured time delay (see Sect. 5, Schild and Thomson 1995;
Kundić et al. 1997 and references therein), is an ideal lens for demonstrating
the trouble you can get into using parametric models without careful thought.
The lens consists of a cluster and its brightest cluster galaxy with two lensed
images of a radio source bracketing the galaxy. VLBI observations (e.g. Gar-
rett et al. 1994) resolve the two images into thin, multi-component jets with
very accurately measured positions (uncertainties as small as 0.1 mas, corre-
sponding to deflections produced by a mass scale ∼ 10−8 of the primary lens !).
Models developed along two lines. One line focused on models in which the
cluster was represented as an external shear (e.g. Grogin and Narayan 1996;
Chartas et al. 1998; Barkana et al. 1999; Chae 1999) while the other explored
more complex models for the cluster (see Kochanek 1991c; Bernstein, Tyson
and Kochanek 1993; Bernstein and Fischer 1999) and argued that external
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shear models had too few parameters to represent the mass distribution given
the accuracy of the constraints. The latter view was born out by the mor-
phology of the lensed host galaxy (Keeton et al. 2000a) and direct X-ray
observations of the cluster (Chartas et al. 2002) which showed that the lens
galaxy was within about one Einstein radius of the cluster center where a
tidal shear approximation fails catastrophically. The origin of the problem is
that as a two-image lens, Q0957+561 is critically short of constraints unless
the fine details of the VLBI jet structures are included in the models. Many
studies imposed these constraints to the limit of the measurements (tens of
micro-arcseconds) while not including all possible terms in the potential which
could produce a deflection on that scale (i.e. the precision should have been
restricted to milli-arcseconds rather than micro-arcseconds). Models would
adjust the positions and masses of the cluster and the lens galaxy in order
to reproduce the small scale astrometric details of the VLBI jets without in-
cluding less massive components of the mass distribution (e.g. the ellipticity
gradient and isophote twist of the lens galaxy, Keeton et al. 2000a) that also
affected the VLBI jet structure on these angular scales. Lens models must con-
tain all reasonable structures producing deflections comparable to the scale
of the measurement errors.

We are in the middle of an experiment exploring the second problem – if
you include small scale structures but lack the constraints needed to measure
them, their masses easily become unreasonable unless constrained by common
sense, physical priors or additional data. Lately this has become an issue in
studies (Evans and Witt 2003; Kochanek and Dalal 2004; Quadri, Möller and
Natarajan 2003; Kawano et al. 2004) of whether the flux ratio anomalies in
gravitational lenses could be due to complex angular structure in the lens
galaxy rather than CDM substructure or satellites in the lens galaxy (see
Sect. 8). The problem, as we discuss in the next section on non-parametric
models (Sect. 4.7), is that lens modeling with large numbers of parameters is
closely related to solving linear equations with more variables than constraints
– as the matrix inversion necessary to finding a solution becomes singular, the
parameters of the mass distribution show wild, large amplitude fluctuations
even as the fit to the constraints becomes perfect. Thus, a model including
enough unconstrained parameters is guaranteed to “solve” the anomalous flux
ratio problem even if it should not. For example, Evans and Witt (2003) could
match the flux ratios of Q2237+0305 even though for this lens we know from
the time variability of the flux ratios that the flux ratio anomalies are created
by microlensing rather than complex angular structures in the lens model (see
Part 4).

If only the four compact images are modeled, then the flux ratio anom-
alies can be greatly reduced or eliminated in almost all lenses at the price of
introducing deviations from an ellipsoidal density distribution far larger than
expected (see Sect. 4.4). In some cases, however, you can test these solutions
because the lens has extra constraints beyond the four compact images. We
illustrate this in Fig. 26 where, by adding large amplitude cos 3θ and cos 4θ
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Fig. 26. Surface density contours for models of B1933+503 including misaligned a3

and a4 multipoles (thin lines). The model in the top panel is constrained only by the
4 compact images (images 1, 3, 4 and 6, filled squares). The model in the bottom
panel is also constrained by the other images in the lens (the two-image system 1a/8,
open squares; the four-image system 2a/2b/5/7 filled triangles; and the two-image
system comprising parts of 5/7, open triangles). The tangential critical line of the
model (heavy dashed curve) must pass between the merging images 2a/2b, but fails
to do so in the first model (top panel)
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perturbations to the surface density model for B1933+503, Kochanek and
Dalal (2004) could reproduce the observed image flux ratios if they fit only
the four compact sources. However, after adding the constraints from the other
lensed components, the solution is driven back to being nearly ellipsoidal and
the flux ratios cannot be fit. In every case, Kochanek and Dalal (2004) found
that the extra constraints drove the solution back toward an ellipsoidal density
distribution. In short, a sufficiently complex model can fit underconstrained
data, but that does not mean it makes any sense to do so.

4.7 Non-Parametric Models

The basic idea behind non-parametric mass models is that the effective lens
potential and the deflection equations are linear “functions” of the surface
density. The surface density can be decomposed into multipoles (Kochanek
1991a; Trotter, Winn and Hewitt 2000; Evans and Witt 2003), pixels (see
Saha and Williams 1997, 2004; Williams and Saha 2000), or any other form
in which the surface density is represented as a linear combination of density
functionals multiplied by unknown coefficients κ. In any such model, the lens
equation for image i takes the form

β = θi −Aiκ, (85)

where Ai is the matrix that gives the deflection at the position of image i in
terms of the coefficients of the surface density decomposition κ. For a lens with
i = 1, ..., n images of the same source, such a system can be solved exactly if
there are enough degrees of freedom in the description of the surface density.
For simplicity, consider a two-image lens so that we can eliminate the source
position by hand, leaving the system of equations

θ1 − θ2 = (A1 −A2)κ, (86)

which is easily solved by simply taking the inverse of the matrix A1 − A2 to
find that

κ = (A1 −A2)−1 (θ1 − θ2) . (87)

Sadly, life is not that simple because as soon as the density decomposition has
more degrees of freedom than there are constraints, the inverse (A1 − A2)−1

of the deflection operators is singular.
The solution to this problem is to instead consider the problem as a more

general minimization problem with a χ2 statistic for the constraints and some
form of regularization to restrict the results to plausible surface densities. One
possibility is linear regularization, in which you minimize the function

F = χ2 + λκ ·H · κ, (88)

where the χ2 measures the goodness of fit to the lens constraints, H is a weight
matrix and λ is a Lagrange multiplier. The Lagrange multiplier controls the
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relative weight given to fitting the lens constraints (minimizing the χ2) versus
producing a smooth density distribution (minimizing κ ·H ·κ). The simplest
smoothing function is to minimize the variance of the surface density (H = I,
the identity matrix), or, equivalently, ignore H and use the singular value
decomposition for inverting a singular matrix. By using more complicated
matrices you can minimize derivatives of the density (gradients, curvature
etc.). Solutions are found by adjusting the multiplier λ until the goodness
of fit satisfies χ2 � Ndof where Ndof is the number of degrees of freedom.
Another solution is to use linear programming methods to impose constraints
such as positive surface densities, negative density gradients from the lens
center or density symmetries (Saha and Williams 1997, 2004; Williams and
Saha 2000). Time delays, which are also linear functions of the surface density,
are easily included. Flux ratios are more challenging because magnifications
are quadratic rather than linear functions of the surface density except for
the special case of the generalized singular isothermal models where Ψ =
bθF (χ) (42), Witt, Mao and Keeton 2000; Kochanek et al. 2001a; Evans and
Witt 2001). The best developed, publicly available non-parametric models
are those by Saha and Williams (2004). These are available at http://ankh-
morpork.maths.qmc.ac.uk/∼saha/astron/lens/.

Personally, I am not a fan of the non-parametric models, essentially be-
cause almost all the additional degrees of freedom they include are irrele-
vant to the problem. As I have tried to outline in the preceding sections,
there is no real ambiguity about the aspects of gravitational potentials ei-
ther constrained or unconstrained by lens models. Provided the parametric
models capture these degrees of freedom and you do not get carried away with
the precision of the fits, you can ignore deviations of the cos(16χ) term of the
surface density from that expected for an ellipsoidal model. Similarly for the
monopole profile, the distribution of mass interior and exterior to the images
is irrelevant and for the most part only the mean surface density between
the images has any physical effect. Nothing is gained by allowing arbitrary,
fine-grained distributions.

There are also specific physical and mathematical problems with non-
parametric models just as there are for parametric models. First, the trick of
linearization only works if the lens equations are solved on the source plane.
As we discussed when we introduced model fitting (Sect. 4.6), this makes it
impossible to properly compute error bars on any parameters. The equations
become non-linear if they include either the magnification tensor (83) or use
the true image plane fit statistic (84), and this greatly reduces the attrac-
tiveness of these methods. Second, in many cases the non-parametric models
are not constrained to avoid creating extra images not seen in the observa-
tions – the models reproduce the observed images exactly, but come with no
guarantee that they are not producing 3 other images somewhere else. Third,
it is very difficult to guarantee that the resulting models are physical. For
example, consider a simple spherical lens constrained to have positive surface
density. For the implied three-dimensional density to also be positive definite,
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the surface density must decline monotonically from the center of the lens.
This constraint is usually applied by the Saha and Williams (2004) method.
For the distribution function of the stars making up the galaxy to be positive
definite, the three dimensional density must also decline monotonically – this
implies a constraint on the second derivative of the surface density which is
not imposed by any of these methods. For the distribution to be dynamically
stable it must satisfy a criterion on the derivative of the distribution function
with respect to the orbital energy, and this implies a criterion on the third
derivative of the surface density which is also not imposed (see Binney and
Tremaine 1987). Worse yet, for a non-spherical system we cannot even write
down the constraints on the surface density required for the model to corre-
spond to a stable galaxy with a positive definite distribution function. In short,
most non-parametric models will be unphysical – they overestimate the de-
grees of freedom in the mass distribution. The critique being made, parametric
models have a role because they define the outer limits of what is possible by
avoiding the strong physical priors implicit in parametric models of galaxies.

4.8 Statistical Constraints on Mass Distributions

Where individual lenses may fail to constrain the mass distribution, ensembles
of lenses may succeed. There are two basic ideas behind statistical constraints
on mass distributions. The first idea is that models of individual lenses should
be weighted by the likelihood of the observed configuration given the model
parameters. The second idea is that the statistical properties of lens samples
should be homogeneous.

An example of weighting models by the likelihood is the limit on the
slopes of central density cusps from the observed absence of central images.
Rusin and Ma (2001) considered 6 CLASS (see Sect. 6) survey radio doubles
and computed the probability pi(n) that lens i would have a detectable third
image in the core of the lens assuming power law mass densities Σ ∝ R1−n

and including a model for the observational sensitivities and the magnification
bias (see Sect. 6.6) of the survey. They were only interested in the range n < 2,
because as discussed in Sect. 3, density cusps with n ≥ 2 never have central
images. For most of the lenses they considered, it was possible to find models of
the 6 lenses that lacked detectable central images over a broad range of density
exponents. However, the shallower the cusp, the smaller the probability pi(n)
of producing a lens without a visible central image. For any single lens, pi(n)
varies too little to set a useful bound on the exponent, but the joint probability
of the entire sample having no central images, P = Πi(1 − pi(n)), leads to
a strong (one-sided) limit that n > 1.78 at 95% confidence (see Fig. 27). In
practice, Keeton (2003b) demonstrated that the central stellar densities are
sufficiently high to avoid the formation of visible central images in almost
all lenses given the dynamic ranges of existing radio observations (i.e. stellar
density distributions are sufficiently cuspy), and central black holes can also
assist in suppressing the central image (Mao, Witt and Koopmans 2001).
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Fig. 27. Limits on the central density exponent for power-law density profiles ρ ∝
r−n = r−1−β from the absence of detectable central images in a sample of 6 CLASS
survey radio doubles (Rusin and Ma 2001). The lighter curves show the limits for
the individual lenses with the weakest constraint from B0739+366 and the strongest
from B0218+357, and the heavy solid curve shows the joint probability P

However, the basic idea behind the Rusin and Ma (2001) analysis is important
and underutilized.

An example of requiring the lenses to be homogeneous is the estimate of the
misalignment between the major axis of the luminous lens galaxy and the over-
all mass distribution by Kochanek (2002a,b). Figure 28 shows the misalign-
ment angle ΔχLM = |χL −χM | between the major axis χL of the lens galaxy
and the major axis χM of an ellipsoidal mass model for the lens. The par-
ticular mass model is unimportant because any single component model of a
four-image lens will give a nearly identical value for χM (e.g. Kochanek 1991b;
Wambsganss and Paczyński 1994). The distribution of the misalignment an-
gle ΔχLM is not consistent with the mass and the light being either perfectly
correlated or uncorrelated. This is not surprising, because a simple ellipsoidal
model determines the position angle of the mean quadrupole moment near the
Einstein ring, which is a combination of the quadrupole moment of the lens
galaxy, the halo of the lens galaxy, and the local tidal shear (see Sect. 4.4).
Even if the lens galaxy and the halo were perfectly aligned, we would still find
that the orientation of the mean quadrupole would differ from that of the light
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Fig. 28. (Top) The integral distribution of misalignment angles ΔχLM between
the major axes of the lens galaxy and an ellipsoidal lens model (solid curve with
points for each lens). If the two angles were completely uncorrelated, the distribution
would follow the dashed line. If the two angles were perfectly correlated they would
follow the solid curve because of the measurement uncertainties in the two angles.
(Bottom) Logarithmic contours of the probability for matching the distribution of
misalignment angles as a function of the rms misalignment σθ between the mass
and the light and the typical tidal shear γrms. Theoretically we expect tidal shears
γrms 	 0.06. The solid contours are spaced by 0.5 dex and the dashed contours
are spaced by 0.1 dex relative to the maximum likelihood contour. The differences
between dashed contours are not statistically significant, while those between solid
contours are statistically significant
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because of the effects of the tidal shears. We can model this by estimating the
probability of reproducing the observed misalignment distribution in terms of
the strength of the local tidal shear γrms and the dispersion σχ in the angle
between the major axis of the mass distribution and the light, as shown in
Fig. 28. The observed mismatch can either be produced by having a typical
tidal shear of γrms � 0.05 or by having a typical misalignment between mass
and light of σχ � 20◦. We know, however, that the typical tidal shear can-
not be zero because it can be estimated from the statistics of galaxies (e.g.
Keeton, Kochanek and Seljak 1997; Holder and Schechter 2003). Keeton et al.
(1997) obtained γrms � 0.05, in which case mass must align with light and
we obtain an upper limit of σχ <∼ 10◦. Holder and Schechter (2003) argue for
a much higher rms shear of γrms = 0.15 based on N-body simulations, which
is too high to be consistent with the observed alignment of mass models and
the luminous galaxy. One possible explanation (based on the results of White,
Hernquist and Springel 2001) is that Holder and Schechter (2003) included
parts of the lens galaxy’s own halo in their estimate of the external shear.
Alternatively, if lens galaxies are more compact than the SIE model used by
Kochanek (2002a,b), then the lower surface density 〈κ〉 raises the required
shear (since γ ∝ (1 − 〈κ〉), (78)). However, mass distributions similar to con-
stant mass-to-light ratio models of the lenses would be required, which would
be inconsistent with shear estimates from simulations in which galaxy masses
are dominated by extended dark matter halos.

The trade-off between central concentration and shear leads to the inter-
esting question of where the quadrupole structure of lenses originates. As we
discussed in Sect. 4.4, we can break up the quadrupole of the mass distribution
into the internal quadrupole due to the matter interior to the Einstein ring
(52) and the exterior quadrupole due to the matter outside the Einstein ring
(51). While the internal quadrupole is due only to the lens galaxy, the external
quadrupole is a mixture of the quadrupole from the parts of the galaxy outside
the Einstein ring (i.e. the dark matter halo) and the tidal shear from the en-
vironment. An important fact to remember is that for an isothermal ellipsoid,
only fint = 25% of the quadrupole is due to mass inside the Einstein ring (see
Fig. 22, Sect. 4.4) ! Turner, Keeton and Kochanek (2004) explored this by fit-
ting all the available four-image lenses with an SIS monopole combined with
an internal and an external quadrupole. They then computed the fraction of
the quadrupole fint associated with the mass interior to the Einstein ring to
find the distribution shown in Fig. 29. Most four-image lenses seem to be dom-
inated by the external quadrupole, with internal quadrupole fractions below
the fint = 0.25 fraction expected for an isothermal ellipsoid. Lenses clearly in
environments with very large tidal shears (e.g. RXJ0911+0551 which is near
a massive cluster, Bade et al. 1997; Kneib et al. 2000; Morgan et al. 2001 or
HE0435–1223 which is near a large galaxy, Wisotzki et al. 2002, see Fig. 4)
show much smaller internal shear fractions. B1608+656 (Myers et al. 1995;
Fassnacht et al. 1999), which has two lens galaxies inside the Einstein ring,
shows a significantly higher internal quadrupole fraction. Combined with the
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Fig. 29. The internal shear fraction fint for the four-image lenses. Each system
was fitted by an SIS combined with an internal shear and an external shear and
fint = |Γ |/(|Γ |+ |γ|) is the fraction of the quadrupole amplitude due to the internal
shear. An SIE has fint = 1/4 (see Fig. 22). Most of the quads have fint <∼ 1/4 as ex-
pected for an SIE in an additional external (tidal) shear field. Objects with very low
fint (e.g. HE0435–1223, RXJ0911+0551, B1422+231) have nearby galaxies or clus-
ters generating anomalously large external shears, while objects with anomalously
high fint (B1608+656, HE0230–2130, MG0414+0534) tend to have additional lens
components like the second lens galaxy of B1608+656. For some systems either the
imaging data (e.g. B0128+437) or the models (e.g. B2045+265) do not allow a clear
qualitative explanation

close correlation of mass model alignments with the luminous galaxies, this
seems to argue for significant dark matter halos aligned with the luminous
galaxy, but the final step of quantitatively assembling all the pieces has yet
to be done.

The existence of the fundamental plane (see Sect. 9) strongly suggests that
the structure of early-type galaxies is fairly homogeneous – in particular it is
consistent with galaxies having self-similar mass distributions in the sense that
the halo structure can be scaled from the structure of the visible galaxy. As
a particular example based on our theoretical expectations, Rusin, Kochanek
and Keeton (2003b) and Rusin and Kochanek (2005) modeled the visible
galaxy with a Hernquist.

Equation 56 model scaled to match the observed effective radius of the
lens galaxy, Re, and then added a cuspy dark matter halo (59 with a variable
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inner cusp η, α = 2 and m = 3) where the inner density cusp (ρ ∝ r−η), the
halo break radius rb and the dark matter fraction fCDM inside 2Re were kept
as variables. The assumption of self-similarity enters by keeping the ratio
rb/Re constant, the dark matter fraction fCDM constant, and then scaling
the mass-to-light ratio of the stars Υ ∝ Lx with the luminosity. 3 We recover
the fundamental plane in this model when x � 0.25. Putting all the pieces
together, the projected mass inside radius R is

M(< R) = Υ∗L∗

(
L(0)
L∗

)1+x [
g(R/Re) + g(2)

fCDM

1 − fCDM
mCDM (R/Re)

]
,

(89)
where Υ∗ is the mass-to-light ratio of the stars in an L∗ galaxy, logL(0) =
logL(z) − e(z) is the luminosity of the lens galaxy evolved to redshift zero
(where we discuss estimates of the evolution rate e(z) in Sect. 9), g(x) is
the fraction of the light inside dimensionless radius x = R/Re (g(1) = 1/2)
and mCDM (x) is the dimensionless dark matter mass inside radius x with
mCDM (2) = 1 so that the CDM mass fraction inside x = 2 is fCDM .

As we discussed earlier in Sect. 4.6, few lenses have sufficient constraints
to estimate all the parameters in such a complex model. However, the as-
sumption of self-similarity allows the average profile to be constrained sta-
tistically (Rusin et al. 2003a,b; Rusin and Kochanek 2005). Suppose we saw
lensed images generated by the same galaxy at a range of different source and
lens redshifts. Each observed lens only reliably measures an aperture mass
Map(R < REin) where REin is the Einstein radius. But the physical scale
REin varies with redshift, so the ensemble of the lenses traces out the overall
mass profile. Clearly we do not have ensembles of lenses generated by iden-
tical galaxies, but the assumption of self-similarity allows us to use the same
idea for lenses with a range of luminosities and scale lengths. For 22 lenses
with redshifts and accurate photometry we compared the measured aperture
masses to the predicted aperture masses (the procedure for two-image lenses
is a little more complicated, see Rusin et al. 2003a,b) to estimate all the model
parameters. Figure 30 shows the results for the parameters associated with the
dark matter halo. In the limit that fCDM → 1 we find that the mass distrib-
ution is consistent with a simple SIS model (the limit fCDM → 1 and n → 2)
almost independent of the break radius location. There is a slight trend with
break radius because as the break to the steep ρ ∝ r−3 outer profile gets closer
to the region with the lensed images the inner cusp can be shallower while
keeping the overall profile over the region with images close to isothermal.
As we reduce fCDM and add mass to the stars, the inner cusp becomes shal-
lower, such that for a NFW (n = 1) cusp the dark matter fraction inside 2Re

is ∼ 40%. It is interesting to note, however, that the total mass distribution
(light + dark) changes little over the full range of allowed parameters (bottom
panels of Fig. 30) – lensing constrains the global mass distribution not how
3 They could also have allowed the CDM fraction to vary as fCDM ∝ Ly, but these

led to degenerate models where only the combination x + y was constrained.
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Fig. 30. The structure of lens galaxies in self-similar models. The top row shows
the permitted region for the slope of the inner dark matter cusp (ρ ∝ r−n) and
the fraction of the mass fCDM inside 2Re composed of dark matter. The results are
shown for three ratios Rb/Re between the break radius Rb of the dark matter profile
and the effective radius Re of the luminous galaxy. The solid (dashed) contours show
the 68% and 95% confidence levels for two (one) parameter. Note that the estimates
of n and fCDM depend little on the location of the break radius relative to the
effective radius. The Bottom row shows all the mass profiles lying with the (two
parameter) 68% confidence region normalized to a fixed projected mass inside 2Re.
For comparison we show the mass enclosed by a de Vaucouleurs model (dotted line)
and an SIS (offset dashed line). While the allowed models exhibit a wide range of
dark matter abundances, slopes and break radii, they all have roughly isothermal
total mass profiles over the radial range spanned by the lensed images

it is divided into luminous and dark subcomponents. Note the resemblance
of the statistical results to the results for detailed models of B1933+503 in
Fig. 24.

4.9 Stellar Dynamics and Lensing

Stellar dynamical analyses of gravitational lenses have reached the level of
studies of local galaxies approximately 15–20 years ago. The analyses are
based on the spherical Jeans equations (see Binney and Tremaine 1987) with
simple models of the orbital anisotropy and generally ignore both deviations
from sphericity and higher order moments of the velocity distributions. The
spherical Jeans equation
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σ2
r = −GM(r)

r2
(90)

relates the radial velocity dispersion σr = 〈v2
r〉1/2, the isotropy parameter

β(r) = 1 − σ2
θ/σ

2
r characterizing the ratio of the tangential dispersion to

the radial dispersion, the luminosity density of the stars ν(r) and the mass
distribution M(r). A well known result from dynamics is that you cannot
infer the mass distribution M(r) without constraining the isotropy β(r) (e.g.
Binney and Mamon 1982). Models with β = 0 are called isotropic models (i.e.
σr = σθ), while models with β → 1 are dominated by radial orbits and models
with β → −∞ are dominated by tangential orbits. These 3D components of
the velocity dispersion must then be projected to measure the line-of-sight
velocity dispersion 〈v2

los〉1/2,

Σ(R)〈v2
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∫ ∞
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where Σ(R) = 2
∫∞
0

dzν(r) is the projected surface brightness and z is the co-
ordinate along the line-of-sight. Modern observations of local galaxies break
the degeneracy between mass and isotropy by measuring higher order mo-
ments (〈vn

los〉) of the line-of-sight velocity distribution (LOSVD) because the
shape of the LOSVD is affected by the isotropy of the orbits. Because the ve-
locity dispersions are measured starting from a Gaussian fit to the LOSVD, the
higher order moments are described by the amplitudes hn of a decomposition
of the LOSVD into Gauss–Hermite polynomials (e.g. van der Marel and Franx
1993). In general, the rms velocity (i.e. combining dispersion and rotation) and
higher order moment profiles of early-type galaxies are fairly self-similar, with
nearly flat rms velocity profiles, modest values of h4 � 0.01±0.03 and slightly
radial orbits 〈β〉 � 0.1–0.2 (e.g. Romanowsky and Kochanek 1999; Gerhard
et al. 2001).

Stellar dynamics is used for two purposes in lensing studies. The first is
to provide a mass normalization for lens models used in studies of lens statis-
tics. We will discuss this in Sect. 6. The second is to use comparisons between
a mass estimated from the geometry of a lens and the velocity dispersion
of the lens galaxy to constrain the mass distribution (e.g. Romanowsky and
Kochanek 1999; Trott and Webster 2002; Koopmans and Treu 2002, 2003;
Treu and Koopmans 2002a,b; Koopmans et al. 2003). It is important to un-
derstand that the systematic uncertainties in combining lensing and stellar
dynamics to determine mass distributions are different from using either in
isolation. For local galaxies we measure a velocity dispersion profile. The nor-
malization of the profile sets the mass scale and the changes in the profile (and
any higher order moments) with radius constrains the mass distribution. To
lowest order, a simple scaling error in the velocity measurements will lead to
errors in the mass scale rather than in the mass distribution. For lens galaxies,
it is the comparison between the velocity dispersion and the mass determined
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by the geometry of the images that constrains the mass distribution. Thus, es-
timates of the mass distribution are directly affected by any calibration errors
in the velocity dispersions.

We can understand the differences with a simple thought experiment. Sup-
pose we have a mass distribution M = M0(R/R0)x in projection and we have
mass estimates M1 at R1 and M2 at R2. Combining them we can solve for
the exponent describing the mass distribution, x = ln(M1/M2)/ ln(R1/R2).
In a dynamical observation the mass estimate is some sort of virial estimator
M ∝ σ2

vR/G while in a lensing measurement it is a direct measurement of M .
Standard velocity dispersion measurements start from the best fit Gaussian
line width σ̂ (uncertainties ±eσ) and then subtract an intrinsic line width σc

(due to the instrument and the intrinsic line width of the star, uncertainties
±ec) in quadrature to estimate the portion of the line width due to the motions
of the stars. Thus σ2

v = f2(σ̂2 − σ2
c ) where f � 1 is a scale factor to account

for deviations from spherical symmetry and non-Gaussian line-of-sight veloc-
ity distributions (LOSVDs). In a purely dynamical study, uncertainties in f
and σc produce bigger fractional errors in the absolute mass scale M0 than in
the exponent x. For example, given measurements σ1 and σ2 at radii R1 and
R2, the exponent, x = 1 + ln(σ2

1/σ
2
2)/ ln(R1/R2), depends only on velocity

dispersion ratios in which calibration errors tend to cancel. This is obvious for
the scale factor f , which cancels exactly if it does not vary with radius. Since
studies of lens dynamics use a comparison between a dynamical mass and a
lensing mass to estimate the mass distribution, the results are more sensitive
to calibration problems because these cancellations no longer occur. If we com-
bine a velocity dispersion measurement σ1 with a lensing mass measurement
M2 our estimate of the exponent becomes x = ln(σ2

1R1/GM2)/ ln(R1/R2)
and the uncertainties are linear in the scale factor f rather than canceling.
An error analysis for the effects of σc is messier, but you again find that the
sensitivity in the mixed lensing and dynamics constraint to errors in σc is
greater than in a purely dynamical study.

Velocity dispersions have now been measured for 10 lenses (0047–2808
Koopmans and Treu 2003;CFRS03.1077TreuandKoopmans2004; Q0957+561
Falco et al. 1997; Tonry and Franx 1999; PG1115+080 Tonry 1998; HST14176
+5226 Ohyama et al. 2002; Gebhardt et al. 2003; Treu and Koopmans 2004;
HST15433+5352 Treu and Koopmans 2004; MG1549+3047 Lehár et al. 1996;
B1608+656 Koopmans et al. 2003; MG2016+112 Koopmans and Treu 2002;
Q2237+0305 Foltz et al. 1992). With the exception of Romanowsky and
Kochanek (1999), who fitted for the distribution function of the lens, the
analyses of the data have used the spherical Jeans equations with parameter-
ized models for the isotropy β(r). They include the uncertainties in σc about
as well as any other dynamical study, although it is worth bearing in mind that
this is tricky because we lack nearby stars with the appropriate metallicity and
the problem of matching the spectral resolution for the galaxy and the tem-
plate stars lacks direct checks of the success of the procedure. A useful rule of
thumb to remember is that repeat measurements of velocity dispersions by dif-
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ferent groups almost always show larger scatter than is consistent with the re-
ported uncertainties. For example, the three velocity dispersion measurements
for the lens HST14176+5226 (224 ± 15 km/s by Ohyama et al. 2002, 202 ±
9 km/s by Gebhardt et al. 2003, and 230 ± 14 km/s by Treu and Koopmans
2004) are mutually consistent only if the uncertainties are broadened by 30%.

In Fig. 31 we summarize the dynamical constraints for 9 of these systems
using the self-similar mass distribution from Rusin and Kochanek (2005, (89)).
This model is very similar to that used by Treu and Koopmans (2004). For
most of the lenses, the region producing a good fit to the combined lensing and
dynamical data overlaps the same region preferred by the Rusin and Kochanek
(2005) self-similar models, shows the same general parameter degeneracy and
is consistent with a simple SIS mass distribution (fcdm → 1 and n = 2). This is
particularly true of 0047–2808, HST15433+5352, B1608+656, MG2016+112
and CFRS03.1077. Only Q2237+0305, where the lens is the bulge of a nearby
spiral and we might not expect this mass model to be applicable, shows a very
different trend (e.g. see the models of Trott and Webster 2002). PG1115+080
and to a lesser extent MG1549+3047 might have steeper than isothermal mass
distributions (falling rotation curves) and the possibility of being consistent
with a constant mass-to-light ratio model (Treu and Koopmans 2002a,b).
HST14176+5226 and to a lesser extent HST15433+5352 could have shallower
than isothermal mass distribution (rising rotation curves). Along the degen-
eracy direction for each lens we will find similar mass distributions with very
different decompositions into luminous and dark matter, just as in Fig. 30. The
problem raised by this panorama is whether it shows that the halo structure
is largely homogeneous with some measurement outliers, or that the structure
of early-type is heterogeneous with important implications for understanding
time delays (Sect. 5) and galaxy evolution (Sect. 9).

My own view tends toward the first interpretation – that the dynamical
data supports the homogeneity of early-type galaxy structure. The permitted
bands in Fig. 31 show the 68% confidence regions given the formal measure-
ment errors and the simple, spherical, isotropic Jeans equation models – this
means that the true 68% confidence regions are significantly larger. We have
already argued that the formal errors on dynamical measurements tend to be
underestimates. For example, the need for HST14176+5226 to have a rising
rotation curve would be considerably reduced if we used the higher velocity
dispersion measurements from Ohyama et al. (2002) or Treu and Koopmans
(2004) or if we broadened the uncertainties by the 30% needed to make the
three estimates statistically consistent. Moreover, the existing analyses have
also neglected the systematic uncertainties arising from the scaling factor f .
There are two important issues that make f 
= 1. The first issue is that stan-
dard velocity dispersion measurements are the width of the best fit Gaussian
model for the LOSVD, and this is not the same as the mean square velocity
(〈v2

los〉1/2) appearing in the Jeans equations used to analyze the data unless
the LOSVD is also a Gaussian. Stellar dynamics has adopted the dimen-
sionless coefficients hn of a Gauss–Hermite polynomial series to model the
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Fig. 31. Constraints from lens velocity dispersion measurements on the self-similar
mass distributions of (89) and Fig. 30. The dotted contours show the 68% and
95% confidence limits from the self-similar models for Rb/Re = 50. The shaded
regions show the models allowed (68% confidence) by the formal velocity disper-
sion measurement errors, and the heavy solid lines show contours of the velocity
dispersion in km/s. We used the low (Gebhardt et al. 2003) velocity dispersion for
HST14176+5226 because it has the smallest formal error. These models assumed
isotropic orbits, thereby underestimating the full uncertainties in the stellar dynam-
ical models

deviations of the LOSVD from Gaussian, and a typical early-type galaxy
has |h4| <∼ 0.03 (e.g. Romanowsky and Kochanek 1999). This leads to a sys-
tematic difference between the measured dispersions and the mean square
velocity of 〈v2

los〉1/2 � σ(1 +
√

6h4) (e.g. van der Marel and Franx 1993), so
|f−1| ∼ 7% for |h4| � 0.03. Only the Romanowsky and Kochanek (1999) mod-
els of Q0957+561 and PG1115+080 have properly included this uncertainty.
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In fact, Romanowsky and Kochanek (1999) demonstrated that there were stel-
lar distribution functions in which the mass distribution of PG1115+080 is
both isothermal and agrees with the measured velocity dispersion. While it
is debatable whether these models allowed too much freedom, it is certainly
true that models using the Jeans equations and ignoring the LOSVD have too
little freedom and will overestimate the constraints.

The second issue is that lens galaxies are not spheres. Unfortunately there
are few simple analytic results for oblate or triaxial systems like early-type
galaxies in which the ellipticity is largely due to anisotropies in the velocity
dispersion tensor rather than rotation. For the system as a whole, the tensor
virial theorem provides a simple global relationship between the major and
minor axis velocity dispersions

σmajor

σminor
� 1 +

1
5
e2 +

9
70
e4 + · · · (92)

for an oblate ellipsoid of axis ratio q and eccentricity e = (1 − q2)1/2 (e.g.
Binney and Tremaine 1987). The velocity dispersion viewed along the major
axis is larger than that on the minor, and the correction can be quite large
since a typical galaxy with q = 0.7 will have a ratio σmajor/σminor � 1.16
that is much larger than typical measurement uncertainties. If galaxies are
oblate, this provides no help for the case of PG1115+080 because making the
line-of-sight dispersion too high requires a prolate galaxy. However, it is a
very simple means of shifting HST14176+5226. Crudely, if we start with the
low 209 km/s velocity dispersion and assume that the lens is a q = 0.7 galaxy
viewed pole on, then σmajor/σminor � 1.14 and the corrections for the shape
are large enough to make HST14176+5226 consistent with the other systems.

A final caveat is that neglecting necessary degrees of freedom in your lens
model can bias inferences from the stellar dynamics of lenses just as it can in
pure lens modeling. For example, Sand et al. (2002, 2004) used a comparison
of lensed arcs in clusters to velocity dispersion measurements of the central
cluster galaxy to argue that the cluster dark matter distribution could not have
the ρ ∝ 1/r cusp of the NFW model for CDM halos. However, Bartelmann
and Meneghetti (2004) and Dalal and Keeton (2003) show that the data are
consistent with an NFW cusp if the lens models include a proper treatment
of the non-spherical nature of the clusters. This has not been an issue in the
stellar dynamics of strong lenses where the lens models used to determine the
mass scale have always included the effects of ellipticity and shear, but it is
well worth remembering.

5 Time Delays

Nothing compares to the measurement of the Hubble constant in bringing
out the worst in astronomers. As we discussed in the previous section on
lens modeling, many discussions of lens models seem obfuscatory rather than
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illuminating, and the tendency in this direction increases when the models
are used to estimate H0. In this section we discuss the relationship between
time delay measurements, lens models and H0. All results in the literature are
consistent with this discussion, although it may take you several days and a
series of e-mails to confirm it for any particular paper. The basic idea is simple.
We see images at extrema of the virtual time delay surface (e.g. Blandford and
Narayan 1986, Part 1) so the propagation time from the source to the observer
differs for each image. The differences in propagation times, known as time
delays, are proportional to H−1

0 because the distances between the observer,
the lens and the source depend on the Hubble constant (Refsdal 1964a,b).
When the source varies, the variations appear in the images separated by the
time delays and the delays are measured by cross-correlating the light curves.
There are recent reviews of time delays and the Hubble constant by Courbin,
Saha and Schechter (2002b) and Kochanek and Schechter (2004). Portions of
this section are adapted from Kochanek and Schechter (2004) since we were
completing that review at about the same time as we presented these lectures.

To begin the discussion we start with our standard simple model, the
circular power law lens from Sect. 3. As a circular lens, we see two images
at radii θA and θB from the lens center and we will assume that θA > θB

(Fig. 20). Image A is a minimum, so source variability will appear in image
A first and then with a time delay Δt in the saddle point image B. We can
easily fit this data with an SIS lens model (see (21) and (22)) to find that
θA = β + b and θB = b − β where b = (θA + θB)/2 is the critical (Einstein)
radius of the lens and β = (θA − θB)/2 is the source position. The light travel
time for each image relative to a fiducial unperturbed ray is (see Part 1)

τ(θ) =
DdDs

cDds

[
1
2

(θ − β)2 − Ψ(θ)
]
, (93)

where the effective potential Ψ = bθ for the SIS lens. Remember that the
distances are comoving angular diameter distances rather than the more fa-
miliar angular diameter distances and this leads to the vanishing of the extra
1 + zl factor that appears in the numerator if you insist on using angular di-
ameter distances. The propagation time scales as H−1

0 � 10h−1 Gyr because
of the H−1

0 scalings of the distances. After substituting our lens model, and
differencing the delays for the two images, we find that

ΔtSIS = τB − τA =
1
2
DdDs

cDds

(
θ2

A − θ2
B

)
. (94)

The typical deflection angle b ∼ 3 × 10−6 radians (so R2
A ∼ 10−11) converts

the 10h−1 Gyr propagation time into a time delay of months or years that
can be measured by monitoring the light curves of the images. Naively, this
result suggests that the problem of interpreting time delays to measure H0 is
a trivial problem in astrometry.

We can check this assumption by using our general power-law models
from Sect. 3 instead of an SIS. The power-law models correspond to density
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distributions ρ ∝ r−n, surface densities κ ∝ R1−n and circular velocities
vc ∝ r(2−n)/2 of which the SIS model is the special case with n = 2. These
models have effective potentials

Ψ(θ) =
b2

3 − n

(
θ

b

)3−n

. (95)

As we discussed in Sect. 4.1 we can fit our simple, circular two-image lens
with any of these models to determine b(n) and β(n) (66), which we can then
substitute into the expression for the propagation time to find that the time
delay between the images is

Δt(n) = (n− 1)ΔtSIS

[

1 − (2 − n)2

12

(
δθ

〈θ〉

)2

+ · · ·
]

, (96)

where we have expanded the result as a series in the ratio between the mean
radius of the images 〈θ〉 = (θA +θB)/2 and the thickness of the radial annulus
separating them δθ = θA−θB . While the expansion assumes that δθ/〈θ〉 ∼ β/b
is small, we can usually ignore higher order terms even when δθ/〈θ〉 is of
order unity. We now see that the time delay depends critically on the density
profile, with more centrally concentrated mass distributions (larger values of
n) producing longer time delays or implying larger Hubble constants for a
fixed time delay.

The other idealization of the SIS model, the assumption of a circular lens,
turns out to be less critical. A very nice analytic example is to consider a singu-
lar isothermal model with arbitrary angular structure in which κ = bF (χ)/2θ
where F (χ) is an arbitrary function of the azimuthal angle. The singular
isothermal ellipsoid (37) is an example of this class of potential. For this
model family, Δt = ΔtSIS independent of the actual angular structure F (χ)
(Witt, Mao and Keeton 2000).

5.1 A General Theory of Time Delays

Just as for estimating mass distributions (Sect. 4), the aspect of modeling
time delays that creates the greatest suspicion is the need to model the grav-
itational potential of the lens. Just as for mass distributions, this problem
is largely of our own making, arising from poor communication, understand-
ing and competition between groups. Here we will use simple mathematical
expansions to show exactly what properties of the potential determine time
delays. Any models which have these generic properties have all the degrees
of freedom needed to properly interpret time delays. This does not, unfortu-
nately, avoid the problem of degeneracies between the mass models and the
Hubble constant.

The key to understanding time delays comes from Gorenstein, Falco and
Shapiro (1988, Kochanek 2002a,b, see also Saha 2000) who showed that the



166 C.S. Kochanek

time delay in a circular lens depends only on the image positions and the sur-
face density κ(θ) in the annulus between the images. The two lensed images
at radii θA > θB define an annulus bounded by their radii, with an interior
region for θ < θB and an exterior region for θ > θA (Fig. 20). As we discussed
in Sect. 4.1, the mass in the interior region is implicit in the image positions
and constrained by the astrometry. From Gauss’ law we know that the distri-
bution of the mass in the interior and the amount or distribution of mass in
the exterior region is irrelevant. A useful approximation is to assume that the
surface density in the annulus can be locally approximated by a power law,
κ(θ) ∝ θ1−n for θB < θ < θA, with a mean surface density in the annulus of
〈κ〉 = 〈Σ〉/Σc. The time delay between the images is then (Kochanek 2002a)

Δt = 2ΔtSIS

[

1 − 〈κ〉 − 1 − n〈κ〉
12

(
δθ

〈θ〉

)2

+O

((
δθ

〈θ〉

)4
)]

, (97)

where 〈θ〉 = (θA + θB)/2 and δθ = θA − θB as before. Thus, the time delay
is largely determined by the average surface density 〈κ〉 with only modest
corrections from the local shape of the surface density distribution even when
δθ/〈θ〉 ∼ 1. This second order expansion is exact for an SIS lens (〈κ〉 = 1/2,
n = 2), and it reproduces the time delay of a point mass lens (〈κ〉 = 0) to
better than 1% even when δθ/〈θ〉 = 1. The local model also explains the
scalings of the global power-law models. A κ ∝ θ1−n global power law has
surface density 〈κ〉 = (3− n)/2 near the Einstein ring, so the leading term of
the time delay is Δt = 2ΔSIS(1 − 〈κ〉) = (n− 1)ΔtSIS just as in (96).

The role of the angular structure of the lens is easily incorporated into
the expansion through the multipole expansion of Sect. 4. A quadrupole term
in the potential with dimensionless amplitude εΨ produces ray deflections of
order O(εΨ b) at the Einstein radius b of the lens. In a four-image lens, the
quadrupole deflections are comparable to the fractional thickness of the annu-
lus, εΨ � δθ/〈θ〉, while in a two-image lens they are smaller. For an ellipsoidal
density distribution, the cos(2mχ) multipole amplitude is smaller than the
quadrupole amplitude by ε2m ∼ εmΨ <∼ (δθ/〈θ〉)m. Hence, to lowest order in
the expansion we only need to include the internal and external quadrupoles
of the potential but not the changes of the quadrupoles in the annulus or any
higher order multipoles. Remember that what counts is the angular structure
of the potential rather than of the density, and that potentials are always much
rounder than densities with a typical scaling of m−1:m:1 between the poten-
tial, deflections and surface density for the cosmχ multipoles (see Sect. 4.4)

While the full expansion for independent internal and external quadrupoles
is too complex to be informative, the leading term for the case when the inter-
nal and external quadrupoles are aligned is informative. We have an internal
shear of amplitude Γ and an external shear of amplitude γ with χγ = χΓ as
defined in (51) and (52). The leading term of the time delay is

Δt � 2ΔtSIS (1 − 〈κ〉) sin2 (ΔχAB/2)
1 − 4fint cos2 (ΔχAB/2)

, (98)
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where ΔχAB is the angle between the images (Fig. 20) and fint = Γ/(Γ + γ)
is the internal quadrupole fraction we explored in Fig. 29. We need not worry
about a singular denominator – successful models of the image positions do
not allow such configurations.

A two-image lens has too few astrometric constraints to fully constrain a
model with independent, misaligned internal and external quadrupoles. For-
tunately, when the lensed images lie on opposite sides of the lens galaxy
(ΔχAB � π + δ with |δ| � 1), the time delay becomes insensitive to the
quadrupole structure. Provided the angular deflections are smaller than the
radial deflections (|δ|〈θ〉 <∼ δθ), the leading term of the time delay reduces to
the result for a circular lens, Δt = 2ΔtSIS(1 − 〈κ〉) if we minimize the total
shear of the lens. In the minimum shear solution the shear converges to the
invariant shear (γ1) and the other shear component γ2 = 0 (see Sect. 4.5). If,
however, you allow the other shear component to be non-zero, then you find
that Δt = 2ΔtSIS(1−〈κ〉−γ2) to lowest order – the second shear component
acts like a contribution to the convergence. In the absence of any other con-
straints, this adds a modest additional uncertainty (5–10%) to interpretations
of time delays in two-image lenses. To first order its effects should average out
in an ensemble of lenses because the extra shear has no preferred sign.

A four image lens has more astrometric constraints and can constrain
a model with independent, misaligned internal and external quadrupoles
– this was the basis of the Turner et al. (2004) summary of the inter-
nal to total quadrupole ratios shown in Fig. 29. If the external shear dom-
inates, then fint � 0 and the leading term of the delay becomes Δt =
2ΔtSIS(1 − 〈κ〉) sin2 ΔχAB/2. If the model is isothermal, like the Ψ = θF (χ)
model we introduced in (42), then fint = 1/4 and we obtain the Witt et
al. (2000) result that the time delay is independent of the angle between
the images Δt � 2ΔtSIS(1 − 〈κ〉). Thus, delay ratios in a four-image lens
are largely determined by the angular structure and provide a check on the
potential model. Unfortunately, the only lens with precisely measured delay
ratios, B1608+656 (Fassnacht et al. 2002), also has two galaxies inside the
Einstein ring and is a poor candidate for a simple multipole treatment (al-
though it is dominated by an internal quadrupole as expected, see Fig. 29).
The delay ratios for PG1115+080 are less well measured (Schechter et al.
1997; Barkana 1997; Chartas et al. 2004), but should be dominated by exter-
nal shear since the estimate from the image astrometry is that fint = 0.083
(0.055 < fint < 0.111 at 95% confidence). Figure 32 shows the dependence of
the PG1115+080 delays on the leading angular dependence of the time delay
(98) after scaling out the standard astrometry factor for the different radii of
the images (94). Formally, the estimate from the time delays that fint = −0.02
(−0.09 < fint < 0.03 at 68% confidence) is a little discrepant, but the two
estimates agree at the 95% confidence level and there are still some system-
atic uncertainties in the shorter optical delays of PG1115+080. Changes in
fint between lenses is one reason why (Saha 2004) found significant scatter
between time delays scaled only by ΔtSIS , since the time delay lenses range



168 C.S. Kochanek

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

-0.4 -0.2 0 0.2 0.4
0

2

4

6

8

10

Fig. 32. (Top) The PG1115+080 time delays scaled by the astrometric factor θ2
i −θ2

j

appearing in ΔtSIS (94) as a function of the leading angular dependence of the
time delay (sin2 Δχij/2) (98). The light solid curve and the dashed curves show
the dependence for the best fit internal shear fraction fint and its 68% confidence
limits. A true external shear fint = 0 is shown by the heavy solid curve inside the
confidence limits, and the scaling for an SIE (fint = 1/4) is shown by the horizontal
line. (Bottom) The χ2 goodness of fit for the internal shear fraction fint from the
time delay ratios is shown by the curve with the 68% confidence region bracketed
by the vertical lines. The estimate of fint from the image astrometry is shown by
the point with an error bar
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from external shear dominated systems like PG1115+080 to internal shear
dominated systems like B1608+656.

5.2 Time Delay Lenses in Groups or Clusters

Most galaxies are not isolated, and many early-type lens galaxies are members
of groups or clusters, so we need to consider the effects of the local environment
on the time delays. Weak perturbations are easily understood since they will
simply be additional contributions to the surface density (κc) and the external
shear/quadrupole (γc) we discussed in Sect. 4. In general the effects of the
external shear γc are minimal because they either have little effect on the
delays (two-image lenses) or are tightly constrained by either the astrometry
or delay ratios (four-image lenses or systems with lensed host galaxies see
Sect. 10). The problems arise from either the degeneracies associated with the
surface density κc or the need for a complete, complicated cluster model.

The problem with κc is the infamous mass-sheet degeneracy (Part 1, Falco,
Gorenstein and Shapiro 1985). If we have a model predicting a time delay Δt0
and add a sheet of constant surface density κc, then the time delay is changed
to (1−κc)Δt0 without changing the image positions, flux ratios, or time delay
ratios. Its effects can be understood from Sect. 5.1 as a contribution to the an-
nular surface density with 〈κ〉 = κc and η = 1. Its only observable effect other
than that on the time delays is a reduction in the mass of the lens galaxy that
could be detected given an independent estimate of the lens galaxy’s mass such
as a velocity dispersion (e.g. Sect. 4.9 see Romanowsky and Kochanek 1998 for
an attempt to do this for Q0957+561). It can also be done given an indepen-
dent estimate of the properties of the group or cluster using weak lensing (e.g.
Fischer et al. 1997 in Q0957+561), cluster galaxy velocity dispersions (e.g.,
Angonin-Willaime, Soucail and Vanderriest 1994 for Q0957+561, Hjorth et al.
2002 for RXJ0911+0551) or X-ray temperatures/luminosities (e.g., Morgan
et al. 2001 for RXJ0911+0551 or Chartas et al. 2002 for Q0957+561). The
accuracy of these methods is uncertain at present because each suffers from
its own systematic uncertainties, and they probably cannot supply the 10%
or higher precision measurements of κc needed to strongly constrain models.
When the convergence is due to an object like a cluster, there is a strong
correlation between the convergence κc and the shear γc that is controlled
by the density distribution of the cluster (for an isothermal model κc = γc).
When the lens is in the outskirts of a cluster, as in RXJ0911+0551, it is prob-
ably reasonable to assume that κc ≤ γc, as most mass distributions are more
centrally concentrated than isothermal. Neglecting the extra surface density
coming from nearby objects (galaxies, groups, clusters) leads to an overesti-
mate of the Hubble constant, because these objects all have κc > 0. For most
time delay systems this correction is probably <∼ 10%.

If the cluster or any member galaxies are sufficiently close, then we cannot
ignore the higher-order perturbations in the expansion of (26). This is certainly
true for Q0957+561 (as discussed in Sect. 4.6) where the lens galaxy is the
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brightest cluster galaxy and located very close to the center of the cluster.
It is easy to gauge when they become important by simply comparing the
deflections produced by any higher order moments of the cluster beyond the
quadrupole with the uncertainties being used for the image positions. For a
cluster of critical radius bc at distance θc from a lens of Einstein radius b, these
perturbations are of order bc(b/θc)2 ∼ bγc(b/θc). Because the astrometric
precision of the measurements is so high, these higher order terms can be
relatively easy to detect. For example, models of PG1115+080 (e.g. Impey
et al. (1998)) find that using a group potential near the optical centroid of the
nearby galaxies produces a better fit than simply using an external shear. In
this case the higher order terms are fairly small and affect the results little,
but results become very misleading if they are important but ignored.

5.3 Observing Time Delays and Time Delay Lenses

The first time delay measurement, for the gravitational lens Q0957+561,
was reported in 1984 (Florentin-Nielsen 1984). Unfortunately, a controversy
then developed between a short delay (� 1.1 years, Schild and Cholfin 1986;
Vanderriest et al. 1989) and a long delay (� 1.5 years, Press, Rybicki, and
Hewitt 1992a,b), which was finally settled in favor of the short delay only af-
ter 5 more years of effort (Kundić et al. 1997; also Schild and Thomson 1997
and Haarsma et al. 1999). Factors contributing to the intervening difficulties
included the small amplitude of the variations, systematic effects, which, with
hindsight, appear to be due to microlensing and scheduling difficulties (both
technical and sociological).

While the long-running controversy over Q0957+561 led to poor publicity
for the measurement of time delays, it allowed the community to come to an
understanding of the systematic problems in measuring time delays, and to
develop a broad range of methods for reliably determining time delays from
typical data. Only the sociological problem of conducting large monitoring
projects remains as an impediment to the measurement of time delays in
large numbers. Even these are slowly being overcome, with the result that
the last five years have seen the publication of time delays in 11 systems (see
Table 1).

The basic procedures for measuring a time delay are simple. A moni-
toring campaign must produce light curves for the individual lensed images
that are well sampled compared to the time delays. During this period, the
source quasar in the lens must have measurable brightness fluctuations on
time scales shorter than the monitoring period. The resulting light curves
are cross correlated by one or more methods to measure the delays and their
uncertainties (e.g., Press et al. 1992a,b; Beskin and Oknyanskij 1995; Pelt
et al. 1996; references in Table 1). Care must be taken because there can be
sources of uncorrelated variability between the images due to systematic er-
rors in the photometry and real effects such as microlensing of the individual
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Table 1. Time delay measurements

system Nim Δt (days) astrometry model ref.

HE1104–1805 2 161 ± 7 + “simple” 1
PG1115+080 4 25 ± 2 + “simple” 2
SBS1520+530 2 130 ± 3 + “simple” 3
B1600+434 2 51 ± 2 +/− “simple” 4
HE2149–2745 2 103 ± 12 + “simple” 5

RXJ0911+0551 4 146 ± 4 + cluster/satellite 6
Q0957+561 2 417 ± 3 + cluster 7
B1608+656 4 77 ± 2 +/− satellite 8

B0218+357 2 10.5 ± 0.2 − “simple” 9
PKS1830–211 2 26 ± 4 − “simple” 10

B1422+231 4 (8 ± 3) + “simple” 11

Nim is the number of images. Δt is the longest of the measured delays and its 1σ
error; delays in parenthesis require further confirmation. The “Astrometry” column
indicates the quality of the astrometric data for the system: + (good), +/− (some
problems), − (serious problems). The “Model” column indicates the type of model
needed to interpret the delays. “Simple” lenses can be modeled as a single primary
lens galaxy in a perturbing tidal field. More complex models are needed if there is
a satellite galaxy inside the Einstein ring (“satellite”) of the primary lens galaxy,
or if the primary lens belongs to a cluster. References: (1) Ofek and Maoz 2003;
Wyrzykowski et al. 2003; (2) Barkana 1997, based on Schechter et al. 1997; (3) Burud
et al. 2002a,b; (4) Burud et al. 2000, also Koopmans et al. 2000a,b; (5) Burud et al.
2002a,b; (6) Hjorth et al. 2002; (7) Kundić et al. 1997, also Schild and Thomson
1997 and Haarsma et al. 1999; (8) Fassnacht et al. 2002; (9) Biggs et al. 1999, also
Cohen et al. 2000; (10) Lovell et al. 1998; (11) Patnaik and Narasimha 2001.

images (e.g., Koopmans et al. 2000a,b; Burud et al. 2002a,b; Schechter et al.
2003). Figure 33 shows an example, the beautiful light curves from the radio
lens B1608+656 by Fassnacht et al. (2002), where the variations of all four
lensed images have been traced for over three years. One of the 11 systems,
B1422+231, is limited by systematic uncertainties in the delay measurements.

We want to have uncertainties in the time delay measurements that are
unimportant for the estimates of H0. For the present, uncertainties of order
3%–5% are adequate (so improved delays are still needed for PG1115+080,
HE2149–2745, and PKS1830–211). In a four-image lens we can measure three
independent time delays, and the dimensionless ratios of these delays pro-
vide additional constraints on the lens models (see Sect. 5.1). These ratios
are well measured in B1608+656 (Fassnacht et al. 2002), poorly measured in
PG1115+080 (Barkana 1997; Schechter et al. 1997; Chartas et al. 2004) and
unmeasured in either RXJ0911+0551 or B1422+231. Using the time delay
lenses as very precise probes of H0, dark matter and cosmology will eventu-
ally require still smaller delay uncertainties (∼ 1%). Once a delay is known
to 5%, it is relatively easy to reduce the uncertainties further because we can



172 C.S. Kochanek

Fig. 33. VLA monitoring data for the four-image lens B1608+656. The top panel
shows (from top to bottom) the normalized light curves for the B (filled squares),
A (open diamonds), C (filled triangles) and D (open circles) images as a function of
the Modified Julian Day (MJD). The bottom panel shows the composite light curve
for the first monitoring season after cross correlating the light curves to determine
the time delays (ΔtAB = 31.5±1.5, ΔtCB = 36.0±1.5 and ΔtDB = 77.0±1.5 days)
and the flux ratios (from Fassnacht et al. 2002)
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accurately predict when flux variations will appear in the other images and
the lens will need to be monitored more intensively.

The expression for the time delay in an SIS lens (94) reveals the other
data that are necessary to interpret time delays. First, the source and lens
redshifts are needed to compute the distance factors that set the scale of
the time delays. Fortunately, we know both redshifts for all 11 systems in
Table 1 even though missing redshifts are a problem for the lens sample as
a whole (see Sect. 2). The dependence of the distances Dd, Ds and Dds on
the cosmological model is unimportant until our total uncertainties approach
5%. Second, we require accurate relative positions for the images and the lens
galaxy. These uncertainties are always dominated by the position of the lens
galaxy relative to the images. For most of the lenses in Table 1, observations
with radio interferometers (VLA, Merlin, VLBA) and HST have measured the
relative positions of the images and lenses to accuracies <∼ 0.′′005. Sufficiently
deep HST images can obtain the necessary data for almost any lens, but
dust in the lens galaxy (as seen in B1600+434 and B1608+656) can limit the
accuracy of the measurement even in a very deep image. For B0218+357 and
PKS1830–211, however, the position of the lens galaxy relative to the images
is not known to sufficient precision or determined only from models (see Biggs
et al. 1999; Lehár et al. 2000; Courbin et al. 2002a,b; Winn et al. 2002a,b,c;
Wucknitz, Biggs and Browne 2004; York et al. 2005).

We can also divide the systems by the complexity of the required lens
model. We define eight of the lenses as “simple,” in the sense that the available
data suggests that a model consisting of a single primary lens in a perturbing
shear (tidal gravity) field should be an adequate representation of the gravi-
tational potential. In some of these cases, an external potential representing
a nearby galaxy or parent group will improve the fits, but the differences
between the tidal model and the more complicated perturbing potential are
small (see Sect. 5.2). We include the quotation marks because the classification
is based on an impression of the systems from the available data and models.
While we cannot guarantee that a system is simple, we can easily recognize
two complications that will require more complex models.

The first complication is that some primary lenses have less massive satel-
lite galaxies inside or near their Einstein rings. This includes two of the time
delay lenses, RXJ0911+0551 and B1608+656. RXJ0911+0551 could simply
be a projection effect, since neither lens galaxy shows irregular isophotes.
Here the implication for models may simply be the need to include all the
parameters (mass, position, ellipticity, . . . ) required to describe the second
lens galaxy, and with more parameters we would expect greater uncertainties
in H0. In B1608+656, however, the lens galaxies show the heavily disturbed
isophotes typical of galaxies undergoing a disruptive interaction. How one
should model such a system is unclear. If there was once dark matter associ-
ated with each of the galaxies, how is it distributed now? Is it still associated
with the individual galaxies? Has it settled into an equilibrium configuration?
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While B1608+656 can be well fit with standard lens models (Fassnacht et al.
2002; Koopmans et al. 2003), these complications have yet to be explored in
detail.

The second complication occurs when the primary lens is a member of
a more massive (X-ray) cluster, as in the time delay lenses RXJ0911+0551
(Morgan et al. 2001) and Q0957+561 (Chartas et al. 2002). The cluster model
is critical to interpreting these systems (see Sect. 5.2). The cluster surface
density at the position of the lens (κc >∼ 0.2) leads to large corrections to
the time delay estimates and the higher-order perturbations are crucial to
obtaining a good model. For example, models in which the Q0957+561 cluster
was treated simply as an external shear were grossly incorrect (see Sect. 4.6,
Keeton et al. 2000a). In addition to the uncertainties in the cluster model
itself, we must also decide how to include and model the other cluster galaxies
near the primary lens. Thus, lenses in clusters have many reasonable degrees
of freedom beyond those of the “simple” lenses.

5.4 Results: The Hubble Constant and Dark Matter

With our understanding of the theory and observations of the lenses we
will now explore their implications for H0. We focus on the “simple” lenses
PG1115+080, SBS1520+530, B1600+434, and HE2149–2745. We only com-
ment on the interpretation of the HE1104–1805 delay because the measure-
ment is too recent to have been interpreted carefully. We will briefly discuss
the more complicated systems B0218+357, RXJ0911+0551, Q0957+561, and
B1608+656, and we will not discuss the systems with problematic time delays
or astrometry.

The most common, simple, realistic model of a lens consists of a singular
isothermal ellipsoid (SIE) in an external (tidal) shear field (see Sect. 4). The
model has 7 parameters (the lens position, mass, ellipticity, major axis ori-
entation for the SIE, and the shear amplitude and orientation). It has many
degrees of freedom associated with the angular structure of the potential, but
the radial structure is fixed with 〈κ〉 � 1/2. For comparison, a two-image
(four-image) lens supplies 5 (13) constraints on any model of the potential:
2 (6) from the relative positions of the images, 1 (3) from the flux ratios of
the images, 0 (2) from the inter-image time delay ratios, and 2 from the lens
position. With the addition of extra components (satellites/clusters) for the
more complex lenses, this basic model provides a good fit to all the time delay
lenses except Q0957+561. Although a naive counting of the degrees of free-
dom (Ndof = −2 and 6, respectively) suggests that estimates of H0 would be
under constrained for two-image lenses and over constrained for four-image
lenses, the uncertainties are actually dominated by those of the time delay
measurements and the astrometry in both cases. This is what we expect from
Sect. 5.1 — the model has no degrees of freedom that change 〈κ〉 or η, so there
will be little contribution to the uncertainties in H0 from the model for the
potential.
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If we use a model that includes parameters to control the radial density
profile (i.e., 〈κ〉), for example by adding a halo truncation radius a to the SIS
profile (the pseudo-Jaffe model, ρ ∝ r−2(r2 + a2)−1; e.g., Impey et al. 1998;
Burud et al. 2002a)4, then we find the expected correlation between a and
H0 — as we make the halo more concentrated (smaller a), the estimate of H0

rises from the value for the SIS profile (〈κ〉 = 1/2 as a → ∞) to the value for
a point mass (〈κ〉 = 0 as a → 0), with the fastest changes occurring when a is
similar to the Einstein radius of the lens. We show an example of such a model
for PG1115+080 in Fig. 34. This case is somewhat more complicated than a
pure pseudo-Jaffe model because there is an additional contribution to the
surface density from the group to which the lens galaxy belongs. As long as the
structure of the radial density profile is fixed (constant a), the uncertainties
are again dominated by the uncertainties in the time delay. Unfortunately,
the goodness of fit, χ2(a), shows too little dependence on a to determine
H0 uniquely. In general, two-image lenses have too few constraints, and the
extra constraints supplied by a four-image lens constrain the angular structure
rather than the radial structure of the potential. This basic problem holds for
all existing models of the current sample of time delay lenses.

The inability of the present time delay lenses to directly constrain the
radial density profile is the major problem for using them to determine H0.
Fortunately, it is a consequence of the available data on the current sample
rather than a fundamental limitation. It is, however, a simple trade-off –
models with less dark matter (lower 〈κ〉, more centrally concentrated densities)
produce higher Hubble constants than those with more dark matter. We do
have some theoretical limits on the value of 〈κ〉. In particular, we can be
confident that the surface density is bounded by two limiting models. The mass
distribution should not be more compact than the luminosity distribution,
so a constant mass-to-light ratio (M/L) model should set a lower limit on
〈κ〉 >∼ 〈κ〉M/L � 0.2, and an upper limit on estimates of H0. We are also
confident that the typical lens should not have a rising rotation curve at 1–2
optical effective radii from the center of the lens galaxy. Thus, the SIS model
is probably the least concentrated reasonable model, setting an upper bound
on 〈κ〉 <∼ 〈κ〉SIS = 1/2, and a lower limit on estimates of H0. Figure 35
shows joint estimates of H0 from the four simple lenses for these two limiting
mass distributions (Kochanek 2003b). The results for the individual lenses are
mutually consistent and are unchanged by the new 0.149 ± 0.004 day delay
for the A1–A2 images in PG1115+080 (Chartas et al. 2004). For galaxies with
isothermal profiles we find H0 = 48± 3 km s−1 Mpc−1, and for galaxies with
constant M/L we find H0 = 71 ± 3 km s−1 Mpc−1. While our best prior
estimate for the mass distribution is the isothermal profile (see Sect. 4.6), the
lens galaxies would have to have constant M/L to match Key Project estimate

4 This is simply an example. The same behavior would be seen for any other para-
metric model in which the radial density profile can be adjusted.



176 C.S. Kochanek

0.1 10
0

0.2

0.4

0.6

0.8

1

Fig. 34. H0 estimates for PG1115+080. The lens galaxy is modeled as an ellipsoidal
pseudo-Jaffe model, ρ ∝ r−2(r2 +a2)−1, and the nearby group is modeled as an SIS.
As the break radius a → ∞ the pseudo-Jaffe model becomes an SIS model, and as
the break radius a → 0 it becomes a point mass. The heavy solid curve (hexact)
shows the dependence of H0 on the break radius for the exact, nonlinear fits of the
model to the PG1115+080 data. The heavy dashed curve (hscaling) is the value found
using our simple theory (Sect. 5.1) of time delays. The agreement of the exact and
scaling solutions is typical. The light solid line shows the average surface density 〈κ〉
in the annulus between the images, and the light dashed line shows the inverse of
the logarithmic slope η in the annulus (κ ∝ θ1−η). For an SIS model we would have
〈κ〉 = 1/2 and η−1 = 1/2, as shown by the horizontal line. When the break radius
is large compared to the Einstein radius (indicated by the vertical line), the surface
density is slightly higher and the slope is slightly shallower than for the SIS model
because of the added surface density from the group. As we make the lens galaxy
more compact by reducing the break radius, the surface density decreases and the
slope becomes steeper, leading to a rise in H0. As the galaxy becomes very compact,
the surface density near the Einstein ring is dominated by the group rather than
the galaxy, so the surface density approaches a constant and the logarithmic slope
approaches the value corresponding to a constant density sheet (η = 1)
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Fig. 35. H0 likelihood distributions. The curves show the joint likelihood functions
for H0 using the four simple lenses PG1115+080, SBS1520+530, B1600+434, and
HE2149–2745 and assuming either an SIS model (high 〈κ〉, flat rotation curve) or a
constant M/L model (low 〈κ〉, declining rotation curve). The heavy dashed curves
show the consequence of including the X-ray time delay for PG1115+080 from Char-
tas et al. (2004) in the models. The light dashed curve shows a Gaussian model for
the Key Project result that H0 = 72 ± 8 km s−1 Mpc−1

of H0 = 72±8 km s−1 Mpc−1 (Freedman et al. 2001) or the WMAP estimate
of H0 = 72±5 km s−1 Mpc−1 for a flat universe with a cosmological constant
(Spergel et al. 2003).

The difference between these two limits is entirely explained by the differ-
ences in 〈κ〉 and η between the SIS and constant M/L models. In fact, it is
possible to reduce the H0 estimates for each simple lens to an approximation
formula, H0 = A(1− 〈κ〉) +B〈κ〉(η− 1). The coefficients, A and |B| ≈ A/10,
are derived from the image positions and the time delay using the simple
theory from Sect. 5.1. These approximations reproduce numerical results using
ellipsoidal lens models to accuracies of 3 km s−1 Mpc−1 (Kochanek 2002a,b).
For example, in Fig. 34 we also show the estimate of H0 computed based on
the simple theory of Sect. 5.1 and the annular surface density (〈κ〉) and slope
(η) of the numerical models. The agreement with the full numerical solutions
is excellent, even though the numerical models include both the ellipsoidal lens
galaxy and a group. No matter what the mass distribution is, the five lenses
PG1115+080, SBS1520+530, B1600+434, PKS1830–211,5 and HE2149–2745
have very similar dark matter halos. For a fixed slope η, the five systems are
consistent with a common value for the surface density of

〈κ〉 = 1 − 1.07h+ 0.14(η − 1)(1 − h) ± 0.04, (99)

5 PKS1830–211 is included based on the Winn et al. (2002a,b,c) model of the
HST imaging data as a single lens galaxy. Courbin et al. (2002a,b) prefer an
interpretation with multiple lens galaxies which would invalidate the analysis.
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where H0 = 100h km s−1 Mpc−1 and there is an upper limit of σκ <∼ 0.07 on
the intrinsic scatter of 〈κ〉. Thus, time delay lenses provide a new window into
the structure and homogeneity of dark matter halos, regardless of the actual
value of H0.

There is an enormous range of parametric models that can illustrate how
the extent of the halo affects 〈κ〉 and hence H0 — the pseudo-Jaffe model
we used above is only one example. It is useful, however, to use a physically
motivated model where the lens galaxy is embedded in a standard NFW
(Navarro, Frenk and White 1996) profile halo as we discussed at the end of
Sect. 4.1. The lens galaxy consists of the baryons that have cooled to form
stars, so the mass of the visible galaxy can be parameterized using the cold
baryon fraction fb,cold of the halo, and for these CDM halo models the value of
〈κ〉 is controlled by the cold baryon fraction (Kochanek 2003a,b,c). A constant
M/L model is the limit fb,cold → 1 (with 〈κ〉 � 0.2, η � 3). Since the baryonic
mass fraction of a CDM halo should not exceed the global fraction of fb �
0.17 ± 0.03 (e.g., Spergel et al. 2003), we cannot use constant M/L models
without also abandoning CDM. As we reduce fb,cold, we are adding mass to
an extended halo around the lens, leading to an increase in 〈κ〉 and a decrease
in η. For fb,cold � 0.02 the model closely resembles the SIS model (〈κ〉 � 1/2,
η � 2). If we reduce fb,cold further, the mass distribution begins to approach
that of the NFW halo without any cold baryons. Figure 36 shows how 〈κ〉
and H0 depend on fb,cold for PG1115+080, SBS1520+530, B1600+434 and
HE2149–2745. When fb,cold � 0.02, the CDM models have parameters very
similar to the SIS model, and we obtain a very similar estimate of H0 =
52 ± 6 km s−1 Mpc−1 (95% confidence). If all baryons cool, and fb,cold = fb,
then we obtain H0 = 65 ± 6 km s−1 Mpc−1 (95% confidence), which is still
lower than the Key Project estimates.

We excluded the lenses requiring significantly more complicated models
with multiple lens galaxies or very strong perturbations from clusters. If we
have yet to reach a consensus on the mass distribution of relatively isolated
lenses, it seems premature to extend the discussion to still more complicated
systems. We can, however, show that the clusters lenses require significant
contributions to 〈κ〉 from the cluster in order to produce the same H0 as
the more isolated systems. As we discussed in Sect. 2 the three more complex
systems are RXJ0911+0551, Q0957+561 and B1608+656.

RXJ0911+0551 is very strongly perturbed by the nearby X-ray cluster
(Morgan et al. 2001; Hjorth et al. 2002). Kochanek (2003a,b,c) found H0 =
49±5 km s−1 Mpc−1 if the primary lens and its satellite were isothermal and
H0 = 67 ± 5 km s−1 Mpc−1 if they had constant mass-to-light ratios. The
higher value of H0 = 71 ± 4 km s−1 Mpc−1 obtained by Hjorth et al. (2002)
can be understood by combining Sect. 5.1 and Sect. 5.2 with the differences
in the models. In particular, Hjorth et al. (2002) truncated the halo of the
primary lens near the Einstein radius and used a lower mass cluster, both of
which lower 〈κ〉 and raise H0. The Hjorth et al. (2002) models also included
many more cluster galaxies assuming fixed masses and halo sizes.
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Fig. 36. H0 in CDM halo models. The top panel shows 1 − 〈κ〉 for the “simple”
lenses (PG1115+080, SBS1520+530, B1600+434, and HE2149–2745) as a function
of the cold baryon fraction fb,cold. The solid (dashed) curves include (exclude) the
adiabatic compression of the dark matter by the baryons. The horizontal line shows
the value for an SIS potential. The bottom panel shows the resulting estimates of
H0, where the shaded envelope bracketing the curves is the 95% confidence region
for the combined lens sample. The horizontal band shows the Key Project estimate.
For larger fb,cold, the density 〈κ〉 decreases and the local slope η steepens, leading
to larger values of H0. The vertical bands in the two panels show the lower bound
on fb from local inventories and the upper bound from the CMB
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Q0957+561 is a special case because the primary lens galaxy is the bright-
est cluster galaxy and it lies nearly at the cluster center (Keeton et al. 2000a;
Chartas et al. 2002). As a result, the lens modeling problems are particularly
severe, and Keeton et al. (2000a,b) found that all previous models (most re-
cently, Barkana et al. 1999; Bernstein and Fischer 1999; and Chae 1999, see
Sect. 4.6) were incompatible with the observed geometry of the lensed host
galaxy. While Keeton et al. (2000a) found models consistent with the struc-
ture of the lensed host, they covered a range of almost ±25% in their estimates
of H0. A satisfactory treatment of this lens remains elusive.

HE1104–1805 has the most recently measured time delay (Ofek and Maoz
2003; Wyrzykowski et al. 2003). Given the Δt = 161±7 day delay, a standard
SIE model of this system predicts a very high H0 � 90 km s−1 Mpc−1.
The geometry of this system and the fact that the inner image is brighter
than the outer image both suggest that HE1104–1805 lies in an anomalously
high tidal shear field, while the standard model includes a prior to keep the
external shear small. A prior is needed because a two-image lens supplies
too few constraints to determine both the ellipticity of the main lens and
the external shear simultaneously. Since the images and the lens in HE1104–
1805 are nearly collinear, the anomalous H0 estimate for the standard model
may be an example of the shear degeneracy we briefly mentioned in Sect. 5.1.
At present the model surveys needed to understand the new delay have not
been made. Observations of the geometry of the host galaxy Einstein ring will
resolve any ambiguities due to the shear in the near future (see Sect. 10).

The lens B1608+656 consists of two interacting galaxies, and, as we dis-
cussed in Sect. 2, this leads to a greatly increased parameter space. Fass-
nacht et al. 2002 used SIE models for the two galaxies to find H0 =
61 − 65 km s−1 Mpc−1, depending on whether the lens galaxy positions are
taken from the H-band or I-band lens HST images (the statistical errors are
negligible). The position differences are probably created by extinction effects
from the dust in the lens galaxies. Like isothermal models of the “simple”
lenses, the H0 estimate is below local values, but the disagreement is smaller.
These models correctly match the observed time delay ratios. Koopmans et al.
(2003) obtain a still higher estimate of H0 = 75 ± 7 km s−1 Mpc−1 because
the lens galaxy positions shift after they include extinction corrections. They
use a foreground screen model to make the extinction corrections, which is a
better approximation than no extinction corrections, but is unlikely to allow
precise correction in a system like B1606+656 where the dust and stars are
mixed and there is no simple relation between color excess and optical depth
(e.g. Witt, Thronson and Capuano 1992).

Despite recent progress both in modeling the VLBI structure (Wucknitz
et al. 2004) and obtaining deep images (York et al. 2005) it is unclear whether
B0218+357 has escaped its problems with astrometry and models. While York
et al. (2005) have clearly measured the position of the lens galaxy, the depen-
dence of the position on the choice of the PSF model remains a significant
source of uncertainty for estimates of H0. Models of the system using power
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law models find a slope very close to isothermal η = 2.04 ± 0.02 (ρ ∝ r−η).
Unfortunately, these models have too few degrees of freedom given the small
astrometric uncertainties in the VLBI structures providing the constraints (be-
cause the only angular structure in the model is the ellipsoidal potential used
for the main lens galaxy), and this makes the limits on the power slope suspect
(see Sect. 4.6). For example, while it is true that Lehár et al. (2000) estimated
that the environmental shear near B0218+357 was small, even a γ = 0.01
external tidal shear produces deflections (3 milli-arcseconds) that are large
compared to the accuracy of the constraints used for the models and so must
be included for the models to be reliable. Within these caveats, B0218+357
(like the models of B1608+656 with significant extinction corrections) sup-
ports a nearly isothermal mass distribution with H0 = 73±8 km s−1 Mpc−1.

5.5 The Future of Time Delay Measurements

We understand the theory of time delays very well – the only important
variable in the lens structure is the average surface density 〈κ〉 of the lens
near the images for which the delay is measured. The angular structure of the
potential has an effect on the delays, but it is either small or well-constrained
by the observed image positions. Provided a lens does not lie in a cluster where
the cluster potential cannot be described by a simple expansion, any lens
model that includes the parameters needed to vary the average surface density
of the lens near the images and to change the ratio between the quadrupole
moment of the lens and the environment includes all the variables needed to
model time delays, to estimate the Hubble constant, and to understand the
systematic uncertainties in the results. Unfortunately, there is a tendency in
the literature to confuse rather than to illuminate this understanding, even
though all differences between estimates of the Hubble constant for the simple
time delay lenses can be understood on this basis.

The problem with time delays lies with the confusing state of the data.
The four simplest time delay lenses, PG1115+080, SBS1520+530, B1600+434
and HE2149–2745, can only match the currently preferred estimate of H0 �
72 ± 8 km s−1 Mpc−1 (Freedman et al. 2001; Spergel et al. 2003) if they
have nearly constant M/L mass distributions. If they have the favored quasi-
isothermal mass distributions, then H0 � 48±3 km s−1 Mpc−1. This leads to
a conundrum: why do simple lenses with time delay measurements have falling
rotation curves, while simple lenses with direct estimates of the mass profile
do not? This is further confused by B1608+656 and B0218+357, which due
to their observational complexity would be the last systems I would attempt
to understand, but in current analyses can be both isothermal and have high
H0. In resolving this problem it is not enough to search for a “Golden Lens.”
There is no such thing as a “Golden Lens”. Chanting “my lens is better than
your lens” may be satisfying but contributes little to understanding the basic
problem.
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The difficulty at the moment is that systems I would view as problematic
(B0218+357 due to problems in astrometry or B1608+656 due to the inter-
acting lens galaxies) allow both mass distributions with flat rotation curves
and H0 = 72 km s−1 Mpc−1, while systems that should be simpler to inter-
pret (the simple lenses in Table 1) do not. Yet the preponderance of evidence
on the mass distributions of lens galaxies suggests that they are fairly ho-
mogeneous in structure and have roughly flat rotation curves (Sect. 4). The
simplest way to clarify this problem is to measure accurate time delays for
many more systems. At a fixed value of the Hubble constant we will either
find significant scatter in the surface densities near the images or we will not.

6 Gravitational Lens Statistics

It is the opinion of the author that the statistics of lenses as a method for deter-
mining the cosmological model has largely ceased to be interesting. However,
it is important to understand the underlying physics because it determines
the types of lenses we detect. While most recent analyses have found cosmo-
logical results consistent with the concordance model (Chae et al. 2002; Chae
2003; Davis, Huterer and Krauss 2003, Mitchell et al. 2004) there are still
large statistical uncertainties and some dangerous systematic assumptions.
More importantly, there is little prospect at present of lens statistics becom-
ing competitive with other methods. Gravitational lenses statistics arguably
begins with Press and Gunn (1973), although the “modern” era begins with
the introduction of magnification bias (Turner 1980), the basic statistics of
normal galaxy lenses (Turner, Ostriker and Gott 1984), cross sections and
optical depths for more general lenses (Blandford and Kochanek 1987a,b;
Kochanek and Blandford 1987), explorations of the effects of general cos-
mologies (Fukugita et al. 1990; Fukugita and Turner 1991) and lens structure
(Maoz and Rix 1993; Kochanek 1996a,b) and the development of the general
methodology of interpreting observations (Kochanek 1993a,b,c, 1996a,b).

6.1 The Mechanics of Surveys

There are two basic approaches to searching for gravitational lenses depend-
ing on whether you start with a list of potentially lensed sources or a list of
potential lens galaxies. Of the two, only a search of sources for lensed sources
has a significant cosmological sensitivity – for a non-evolving population of
lenses in a flat cosmological model we will find in Sect. 6.3 that the number
of lensed sources scales with the volume between the observer and the source
D3

s . If you search potential lens galaxies for those which have actually lensed a
source, then the cosmological dependence enters only through distance ratios,
Dds/Ds, and you require a precise knowledge of the source redshift distribu-
tion. Thus, while lenses found in this manner are very useful for many projects
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(mass distributions, galaxy evolution etc.), they are not very useful for deter-
mining the cosmological model. This changes for the case of cluster lenses
where you may find multiple lensed sources at different redshifts behind the
same lens (e.g. Soucail, Kneib and Golse 2004).

Most lenses have been found by searching for lensed sources because the
number of targets which must be surveyed is considerably smaller. This is
basically a statement about the relative surface densities of candidate sources
and lenses. The typical lens is a galaxy with an Einstein radius of approxi-
mately b � 1.′′0 so it has a cross section of order πb2. If you search N lenses
with such a cross section for signs of a lensed source, you would expect to find
Nπb2Σsource lenses where Σsource is the surface density of detectable sources.
If you search N sources for a lens galaxy in front of them, you would expect
to find Nπb2Σlens lenses, where Σlens is the surface density of lens galaxies.
Since the surface density of massive galaxies is significantly higher than the
surface density of easily detectable higher redshift sources (Σlens � Σsource),
you need examine fewer sources than lens galaxies to find the same number
of lensed systems. This is somewhat mitigated by the fact that the surface
density of potential lens galaxies is high enough to allow you to examine many
potential lenses in a single observation, while the surface density of sources is
usually so low that they can be examined only one at a time.

For these reasons, we present a short synopsis of searches for sources be-
hind lenses and devote most of this section to the search for lenses in front
of sources. The first method for finding sources behind lenses is a simple
byproduct of redshift surveys. Redshift surveys take spectra of the central
regions of low redshift galaxies allowing the detection of spectral features
from any lensed images inside the aperture used for the spectrum. Thus, the
lens Q2237+0305 was found in the CfA redshift survey (Huchra et al. 1985)
and SDSS0903+5028 (Johnston et al. 2003) was found in the SDSS survey.
Theoretical estimates (Kochanek 1992a,b; Mortlock and Webster 2000a,b,c)
suggest that the discovery rate should be one per 104–105 redshift measure-
ments, but this does not seem to be borne out by the number of systems
discovered in this age of massive redshift surveys (the origin of the lower rate
in the 2dF survey is discussed by Mortlock & Webster 2001). Miralda-Escude
and Lehár (1992) proposed searching for lensed optical (emission line) rings,
a strategy successfully used by Warren et al. (1996) to find 0047–2808 and by
Ratnatunga, Griffiths and Ostrander (1999) to find lenses in the HST Medium
Deep Survey (MDS). There is also a hybrid approach whose main objective
is simply to find lenses with minimal follow up observations by looking for
high redshift radio lobes that have non-stellar optical counterparts (Lehár et
al. 2001). Since radio lobes have no intrinsic optical emission, a lobe super-
posed on a galaxy is an excellent lens candidate. The present limitation on
this method is the low angular resolution of the available all sky radio surveys
(FIRST, NVSS) and the magnitude limits and star/galaxy separation prob-
lems of the current all-sky optical catalogs. Nonetheless, several systems have
been discovered by this technique.
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The vast majority of lens surveys, however, have focused on either optical
quasars or radio sources because they are source populations known to lie
at relatively high redshift (zs >∼ 1) and that are easily detected even when
there is an intervening lens galaxy. Surveys of lensed optical quasars (Cramp-
ton, McClure and Fletcher 1992; Yee, Fillipenko and Tang 1993; Maoz et al.
1993; Surdej et al. 1993; Kochanek, Falco and Schild 1995) have the advantage
that the sources are bright, and the disadvantages that the bright sources can
mask the lens galaxy and that the selection process is modified by dust in the
lens galaxy and emission from the lens galaxy. We will discuss these effects
in Sect. 9. While many more lensed quasars have been discovered since these
efforts, none of the recent results have been presented as a survey. Surveys of
all radio sources (the MIT/Greenbank survey, Burke, Lehár and Conner 1992)
have the advantage that most lensed radio sources are produced by extended
steep spectrum sources (see Kochanek and Lawrence 1990) but the disadvan-
tage that the complex intrinsic structures of extended radio sources make the
follow up observations difficult. Surveys of flat spectrum radio sources (the
CLASS survey, Browne et al. 2003, the PANELS survey, Winn, Hewitt &
Schechter 2001) have the advantage that the follow up observations are rela-
tively simple because most unlensed flat spectrum sources are (nearly) point
sources. There are disadvantages as well – because the source structure is so
simple, flat spectrum lenses tend to provide fewer constraints on mass mod-
els than steep spectrum lenses. The radio sources tend to be optically faint,
making it difficult to determine their redshifts in many cases.

The second issue for any survey is to understand the method by which
the sources were originally identified. For example, it is important to know
whether the source flux of a lens in the input catalog will be the total flux of
all the images or only a part of the flux (e.g. the flux of the brightest image).
This will have a significant effect on the statistical corrections for using a
flux-limited catalog, a correction known in gravitational lensing as the “mag-
nification bias” (see Sect. 6.6). All large, published surveys were essentially
drawn from samples which would include the total flux of a lensed system. It
is also important to know whether the survey imposed any criterion for the
sources being point-like, since lensed sources are not, or any color criterion
that might be violated by lensed sources with bright lens galaxies or significant
extinction.

The third issue for any survey is to consider the desired selection function
of the observations. This is some combination of resolution, dynamic range
and field of view. These determine the range of lens separations that are de-
tectable, the nature of any background sources, and the cost of any follow
up observations. Any survey is a trade-off between completeness (what frac-
tion of all lenses in sample that can be discovered), false positives (how many
objects selected as lenses candidates that are not), and the cost of follow-up
observations. The exact strategy is not critical provided it is well-understood.
The primary advantages of the surveys of flat spectrum radio sources are the
relatively low false positive rates and follow up costs produced by using a
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source population consisting almost entirely of point sources with no conta-
minating background population. This does not mean that the flat spectrum
surveys are free of false positives – core-jet sources can initially look like
asymmetric two-image lenses. On small angular scales (Δθ <∼ 3.′′0) the quasar
surveys share this advantage, but for wider separations there is contamination
from binary quasars (see Sect. 7.2, Kochanek, Falco and Muñoz 1999; Mort-
lock, Webster and Francis 1999) and Galactic stars (see Kochanek 1993a,b;
Kochanek 1993c).

6.2 The Lens Population

The probability that a source has an intervening lens requires a model for
the distribution of the lens galaxies. In almost all cases these are based on
the luminosity function of local galaxies combined with the assumption that
the comoving density of galaxies does not evolve with redshift. Of course
luminosity is not mass, so a model for converting the luminosity of a local
galaxy into its deflection scale as a lens is a critical part of the process. For
our purposes, the distributions of galaxies in luminosity are well-described by
a Schechter (1976) function,

dn

dL
=

n∗
L∗

(
L

L∗

)α

exp (−L/L∗) . (100)

The Schechter function has three parameters: a characteristic luminosity L∗
(or absolute magnitude M∗), an exponent α describing the rise at low lumi-
nosity, and a comoving density scale n∗. All these parameters depend on the
type of galaxy being described and the wavelength of the observations. In
general, lens calculations have divided the galaxy population into two broad
classes: late-type (spiral) galaxies and early-type (E/S0) galaxies. Over the
period lens statistics developed, most luminosity functions were measured in
the blue, where early and late-type galaxies showed similar characteristic lu-
minosities. The definition of a galaxy type is a slippery problem – it may be
defined by the morphology of the surface brightness (the traditional method),
spectral classifications (the modern method since it is easy to do in redshift
surveys), colors (closely related to spectra but not identical), and stellar kine-
matics (ordered rotational motions versus random motions). Each approach
has advantages and disadvantages, but it is important to realize that the kine-
matic definition is the one most closely related to gravitational lensing and the
one never supplied by local surveys. Figure 37 shows an example of a luminos-
ity function, in this case K-band infrared luminosity function by Kochanek
et al. (2001a,b, also Cole et al. 2001) where MK∗e = −23.53 ± 0.06 mag,
n∗e = (0.45±0.06)×10−2h3 Mpc−3, and αe = −0.87±0.09 for galaxies which
were morphologically early-type galaxies and MK∗l = −22.98 ± 0.06 mag,
n∗l = (1.01 ± 0.13) × 10−2h3 Mpc−3, and αl = −0.92 ± 0.10 for galaxies
which were morphologically late-type galaxies. Early-type galaxies are less
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Fig. 37. Example of a local galaxy luminosity function. These are the K-band
luminosity functions for either all galaxies or by morphological type from Kochanek
et al. (2001a,b). Thecurves show the best fit Schechter models for the luminosity
functions while the points with error bars show a non-parametric reconstruction

common but brighter than late-type galaxies at K-band. It is important to
realize that the parameter estimates of the Schechter function are correlated,
as shown in Fig. 38, and that it is dangerous to simply extrapolate them to
fainter luminosities than were actually included in the survey.

However, light is not mass, and it is mass which determines lensing prop-
erties. One approach would simply be to assign a mass-to-light ratio to the
galaxies and to the expected properties of the lenses. This was attempted
only in Maoz and Rix (1993) who found that for normal stellar mass-to-light
ratios it was impossible to reproduce the data (although it is possible if you
adjust the mass-to-light ratio to fit the data, see Kochanek 1996a,b). Instead,
most studies convert the luminosity functions dn/dL into a velocity func-
tions dn/dv using the local kinematic properties of galaxies and then relate
the stellar kinematics to the properties of the lens model. As Fig. 39 shows
(for the same K-band magnitudes of our luminosity function example), both
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Fig. 38. Schechter parameters α and M∗ for the 2MASS luminosity functions shown
in Fig. 37. Note there is a significant correlations not only between α and M∗ but
also with the comoving density scale n∗ that should be included in lens statistical
calculations but generally are not

early-type and late-type galaxies show correlations between luminosity and
velocity. For late-type galaxies there is a tight correlation known as the
Tully–Fisher (1977) relation between luminosity L and circular velocity vc

and for early-type galaxies there is a loose correlation known as the Faber–
Jackson (1976) relation between luminosity and central velocity dispersion
σv. Early-type galaxies do show a much tighter correlation known as the fun-
damental plane (Dressler et al. 1987; Djorgovski and Davis 1987) but it is
a three-variable correlation between the velocity dispersion, effective radius
and surface brightness (or luminosity) that we will discuss in Sect. 9. While
there is probably some effect of the FP correlation on lens statistics, it has yet
to be found. For lens calculations, the circular velocity of late-type galaxies
is usually converted into an equivalent (isotropic) velocity dispersion using
vc =

√
2σv. We can derive the kinematic relations for the same K-band-

selected galaxies used in the Kochanek et al. (2001a,b) luminosity function,
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(c) 

(d) 

Fig. 39. K-band kinematic relations for 2MASS galaxies. The top panels show the
Faber–Jackson relation and the bottom panels show the Tully–Fisher relations for
2MASS galaxies with velocity dispersions and circular velocities drawn from the
literature. The left hand panels show the individual galaxies, while the right hand
galaxies show the mean relations. Note the far larger scatter of the Faber–Jackson
relation compared to the Tully–Fisher relation

finding the Faber–Jackson relation

Mk − 5 log h = (−23.83 ± 0.03) − 2.5 × (4.04 ± 0.18)(log vc − 2.5) (101)

and the Tully–Fisher relation

Mk − 5 log h = (−22.92 ± 0.02) − 2.5 × (3.96 ± 0.08)(log vc − 2.3). (102)

These correlations, when combined with the K-band luminosity function have
the advantage that the magnitude systems for the luminosity function and the
kinematic relations are identical, since magnitude conversions have caused
problems for a number of lens statistical studies using older photographic
luminosity functions and kinematic relations. For these relations, the charac-
teristic velocity dispersion of an L∗ early-type galaxy is σ∗e � 209 km/s while
that of an L∗ late-type galaxy is σ∗l � 143 km/s. These are fairly typical
values even if derived from a completely independent set of photometric data.



Part 2: Strong Gravitational Lensing 189

(a)

(b)

(c)

Fig. 40. The resulting velocity functions from combining the K-band luminosity
functions (Fig. 37) and kinematic relations (Fig. 39) for early-type (top), late-type
(middle) and all (bottom) galaxies. The points show partially non-parametric es-
timates of the velocity function based on the binned estimates in the right hand
panels of Fig. 39 rather than power-law fits. Note that early-type galaxies dominate
for high circular velocity

Both the Faber–Jackson and Tully–Fisher relations are power-law rela-
tions between luminosity and velocity, L/L∗ ∝ (σv/σ∗)γF J . This allows a sim-
ple variable transformation to convert the luminosity function into a velocity
function,

dn

dv
=

dn

dL

∣∣∣∣
dL

dv

∣∣∣∣ = γFJ
n∗
σ∗

(
σv

σ∗

)(1+α)γF J−1

exp (−(σv/σ∗)
γ
FJ) (103)

as shown in Fig. 40.
There are three caveats to keep in mind about this variable change. First,

we have converted to the distribution in stellar velocities, not some under-
lying velocity characterizing the dark matter distribution. Many early stud-
ies assumed a fixed transformation between the characteristic velocity of the
stars and the lens model. In particular, Turner, Ostriker and Gott (1984)
introduced the assumption σdark = (3/2)1/2σstars for an isothermal mass



190 C.S. Kochanek

model based on the stellar dynamics (Jeans equation, (90) and Sect. 4.9)
of a r−3 stellar density distribution in a r−2 isothermal mass distribution.
Kochanek (1993a,b,c, 1994) showed that this oversimplified the dynamics and
that if you embed a real stellar luminosity distribution in an isothermal mass
distribution you actually find that the central stellar velocity dispersion is
close to the velocity dispersion characterizing the dark matter halo. Figure 41
compares the stellar velocity dispersion to the dark matter halo dispersion
for a Hernquist distribution of stars in an isothermal mass distribution. Such
a normalization calculation is required in any calculation matching observed
velocity functions with a particular mass model for the lenses. Second, in
an ideal world, the luminosity function and the kinematic relations should be
derived from a consistent set of photometric data, while in practice they rarely
are. As we will see shortly, the cross section for lensing scales roughly as σ4

∗, so
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Fig. 41. Stellar velocity dispersions vlos for a Hernquist distribution of stars in
an isothermal halo of dispersion σDM . The solid curves show the local value vlos

and the dashed curves show the mean interior to the radius 〈v2
los〉. Local velocity

dispersions are typically measured on scales similar to Re/8 where the stellar and
dark matter dispersions are nearly equal rather than matching the viral theorem
limit which would be reached in an infinite aperture. The upper, lower and middle
curves are for stars with isotropies of β = 0.2 (somewhat radial), β = 0 (isotropic)
and β = −0.2 (somewhat tangential)
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small errors in estimates of the characteristic velocity have enormous impacts
on the resulting cosmological results – a 5% velocity calibration error leads to
a 20% error in the lens cross section. Since luminosity functions and kinematic
relations are rarely derived consistently (the exception is Sheth et al. 2003),
the resulting systematic errors creep into cosmological estimates. Finally, for
the early-type galaxies where the Faber–Jackson kinematic relation has sig-
nificant scatter, transforming the luminosity function using the mean relation
as we did in (103) while ignoring the scatter underestimates the number of
high velocity dispersion galaxies (Kochanek 1994; Sheth et al. 2003). This
leads to underestimates of both the image separations and the cross sections.
The fundamental lesson of all these issues is that the mass scale of the lenses
should be “self-calibrated” from the observed separation distribution of the
lenses rather than imposed using local observations (as we discuss below in
Sect. 6.7).

Most lens calculations have assumed that the comoving density of the
lenses does not evolve with redshift. For moderate redshift sources this only
requires little evolution for zl < 1 (mostly zl < 0.5), but for higher redshift
sources it is important to think about evolution as well. The exact degree of
evolution is the subject of some debate, but a standard theoretical prediction
for the change between now and redshift unity is shown in Fig. 42 (see Mitchell

Fig. 42. The ratio of the velocity function of halos at z = 1 to that at z = 0
from Mitchell et al. (2004). The solid curve shows the expectation for an ΩΛ 	 0.78
flat cosmological model. The points show results from an N-body simulation with
ΩΛ 	 0.7 and the dashed curve shows the theoretical expectation. For comparison,
the dotted curve shows the evolution model used by Chae and Mao (2003)
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et al. 2004 and references therein). Because lower mass systems merge to form
higher mass systems as the universe evolves, low mass systems are expected
to be more abundant at higher redshifts while higher mass systems become
less abundant. For the σv ∼ σ∗ ∼ 200 km/s galaxies which dominate lens
statistics, the evolution in the number of galaxies is actually quite modest out
to redshift unity, so we would expect galaxy evolution to have little effect on
lens statistics. Higher mass systems evolve rapidly and are far less abundant
at redshift unity, but these systems will tend to be group and cluster halos
rather than galaxies and the failure of the baryons to cool in these systems is
of greater importance to their lensing effects than their number evolution (see
Sect. 7). There have been a number of studies examining lens statistics with
number evolution (e.g. Mao 1991; Mao and Kochanek 1994; Rix et al. 1994)
and several attempts to use the lens data to constrain the evolution (Ofek,
Rix and Maoz 2003; Chae and Mao 2003; Davis, Huterer and Krauss 2003).

6.3 Cross Sections

The basic quantity we need for any statistical analysis is the cross section
of the lens for producing the desired lensing effect (e.g. multiple images, two
images, bright images...). The simplest cross section is the multiple imaging
cross section of the SIS lens – the angular area on the source plane in which a
source will produce two lensed images. We know from (21) and (22) that the
source must lie within Einstein radius b of the lens center to produce multiple
images, so the cross section is simply σSIS = πb2. Since the Einstein radius
b = 4π(σv/c)2Dls/Ds depends on the velocity dispersion and redshift of the
lens galaxy, we will need a model for the distribution of lenses in redshift
and velocity dispersion to estimate the optical depth for lensing. If we are
normalizing directly to stellar dynamical measurements of lenses, then we will
also need a dynamical model (e.g. the Jeans equations of Sect. 4.9) to relate the
observed stellar velocity dispersions to the characteristic dark matter velocity
dispersion σv appearing as a parameter of the SIS model. We can also compute
cross sections for obtaining different image morphologies. For example, in (32)
we calculated the caustic boundaries for the four-image region of an SIS in an
external shear γ. If we integrate to find the area inside the caustic we obtain
the four-image cross section

σ4 =
3π
2

γ2b2

1 − γ2
, (104)

while (provided |γ| < 1/3) the two-image cross section is σ2 = σSIS − σ4 �
σSIS . If the shear is larger, then the tips of astroid caustic extend beyond
the radial (pseudo-)caustic and the lens has regions producing two images,
three images in the disk geometry (Fig. 18), and four images with no simple
expression for the cross sections. There are no analytic results for the singular
isothermal ellipsoid ((37) with s = 0), but we can power expand the cross
section as a series in the ellipticity to find at lowest order that
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σ4 =
π

6
b2ε2 (105)

for a lens with axis ratio q = 1 − ε, while the total cross section is σSIS =
πb2 (e.g. Kochanek 1996a,b; Finch et al. 2002). As a general rule, a lens of
ellipticity ε is roughly equivalent to a spherical lens in an external shear of
γ � ε/3. According to the cross sections, the fraction of four-image lenses
should be of order σ4/σSIS ∼ γ2 ∼ (ε/3)2 ∼ 0.01 rather than the observed
30%. Most of this difference is a consequence of the different magnification
biases of the two image multiplicities.

There is an important subtlety when studying lens statistics with models
covering a range of axis ratios, namely that the definition of the critical radius
b in (say) the SIE model (37) depends on the axis ratio and exactly what
quantity you are holding fixed in your calculation (see Keeton, Kochanek
and Seljak 1997; Keeton and Kochanek 1998; Rusin and Tegmark 2001; Chae
2003). For example, if we compare a singular isothermal sphere to a face on
Mestel disk with the same equatorial circular velocity, the Einstein radius
of the disk is 2/π smaller than the isothermal sphere because for the same
circular velocity a disk requires less mass than a sphere. Since we usually
count galaxies locally and translate these counts into a dynamical variable,
this means that lens models covering a range of ellipticities must be normalized
in terms of the same dynamical variables as were used to count the galaxies.

Much early effort focused on the effects of adding a finite core radius to
these standard models (e.g. Blandford and Kochanek 1987a,b; Kochanek and
Blandford 1987; Kovner 1987a; Hinshaw and Krauss 1987; Krauss and White
1992; Wallington and Narayan 1993; Kochanek 1996a,b). The core radius s
leads to an evolution of the caustic structures (see Part 1, Blandford and
Narayan 1986) with the ratio between the core radius and the critical radius
s/b. Strong lenses with s/b � 1 act like singular models. Weak, or marginal,
lenses with s/b ∼ 1 have significantly reduced cross sections but higher average
magnifications such that the rising magnification bias roughly balances the
diminishing cross section to create a weaker than expected effect of core radii
on the probability of finding a lens (see Kochanek 1996a,b). As the evidence
that lenses are effectively singular has mounted, interest in these models has
waned, and we will not discuss them further here. There is some interest in
these models as a probe of large separation lenses due to groups and clusters
where a finite core radius is replaced by effects of the shallow ρ ∝ r−1 NFW
density cusp, and we will consider this problem in Sect. 7 where we discuss
large separation lenses.

6.4 Optical Depth

The optical depth associated with a cross section is the fraction of the sky in
which you can place a source and see the effect. This simply requires adding
up the contributions from all the lens galaxies between the observer and the
redshift of the source. For the SIS lens we simply need to know the comoving
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density of lenses per unit dark matter velocity dispersion dn/dσ (which may
be a function of redshift)

τSIS =
∫ zs

0

dV

dzl
dzl

∫ ∞

0

dn

dσv

σSIS

4π
dσv, (106)

where dV/dzl is the comoving volume element per unit redshift (e.g. Turner,
Ostriker and Gott 1984). For a flat cosmology, which we adopt from here
on, the comoving volume element is simply dV = 4πD2

ddDd where Dd is the
comoving distance to the lens redshift (2). The generalization to open or closed
models can be found in Carroll et al. (1992). As with most lens calculations,
this means that the expression simplifies if expressed in terms of the comoving
angular diameter distances,

τSIS =
∫ Ds

0

dDdD
2
d

(
Dds

Ds

)2 ∫ ∞
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16π2

(σv

c

)4

(107)

(Gott, Park and Lee 1989; Fukugita, Futamase and Kasai 1990). If the comov-
ing density of the lenses does not depend on redshift, the integrals separate
to give

τSIS =
8π2

15
D3

s
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0

dσv
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dσ v

(σv

c

)4

(108)

(Fukugita and Turner 1991). If we now assume that the galaxies can be de-
scribed by the combination of Schechter luminosity functions and kinematic
relations described in Sect. 6.2, then we can do the remaining integral to find
that

τSIS =
8π2

15
n∗
(σ∗
c

)4

D3
sΓ [1 + α+ 6/γ] =

1
30
τ∗r

−3
H D3

sΓ [1 + α+ 6/γ], (109)

where Γ [x] is a Gamma function, rH = c/H0 is the Hubble radius and the
optical depth scale is

τ∗ = 16π3n∗r
3
H

(σ∗
c

)4

= 0.026
(

n∗

10−2h3Mpc−3

)(
σ∗

200km s−1

)4

. (110)

Thus, lens statistics are essentially a volume test of the cosmology (the D3
s),

predicated on knowing the comoving density of the lenses (n∗) and their av-
erage mass (σ∗). The result does not depend on the Hubble constant – all
determinations of n∗ scale with the Hubble constant such that n∗D

3
s is inde-

pendent of H0.
Two other distributions, those in image separation and in lens redshift at

fixed image separation, are easily calculated for the SIS model and useful if
numerical for any other lens.
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The SIS image separation is Δθ = 8π(σv/c)2Dds/Ds, so

dτSIS

dΔθ
= 1

2D
3
sΔ̂θ

2
(
Γ [1 + α− 2/γFJ , ξ] − 2Δ̂θΓ [1 + α− 4/γFJ , ξ]

+Δ̂θ
2
Γ [1 + α− 6/γFJ , ξ]

)
, (111)

where ξ = (Δθ/Δθ∗)γF J/2 and

Δθ∗ = 8π
(σ∗
c

)2

= 2.′′3
(

σ∗

200km s−1

)2

(112)

is the maximum separation produced by an L∗ galaxy. The mean image sep-
aration,

〈Δθ〉 =
Δθ∗
2

Γ [1 + α+ 8/γ]
Γ [1 + α+ 6/γ]1/2

, (113)

depends only on the properties of the lens galaxy and not on cosmology. If
the cosmological model is not flat, a very weak dependence on cosmology is
introduced (Kochanek 1993a,b,c). For a known separation Δθ, the probability
distribution for the lens redshift becomes

dP

dzl
∝ D2

d

Ds

dDd

dzl
exp

[

−
(
Δθ

Δθ∗

Ds

Dds

)1/2
]

(114)

(we present the result only for Schechter function α = −1 and Faber–Jackson
γFJ = 4). The location of the exponential cut off introduced by the luminosity
function has a strong cosmological dependence, so the presence or absence
of lens galaxies at higher redshifts dominates the cosmological limits. The
structure of this function is quite different from the total optical depth, which
in a flat cosmology is a slowly varying function with a mean lens distance
equal to one-half the distance to the source. The mean redshift changes with
cosmology because of the changes in the distance-redshift relations, but the
effect is not as dramatic as the redshift distributions for lenses of known
separation.

We end this section by discussing the Keeton (2002) “heresy”. Keeton
(2002) pointed out that if you used a luminosity function derived at interme-
diate redshift rather than locally, then the cosmological sensitivity of the opti-
cal depth effectively vanishes when the median redshift of the lenses matches
the median redshift of the galaxies used to derive the luminosity function.
The following simple thought experiment shows that this is true at one level.
Suppose there was only one kind of galaxy and we make a redshift survey and
count all the galaxies in a thin shell at redshift z, finding N galaxies between z
and z+Δz. The implied comoving density of the galaxies, n = N/(ΔzdV/dz),
depends on the cosmological model with the same volume factor appearing in
the optical depth calculation (106). To the extent that the redshift ranges and
weightings of the galaxy survey and a lens survey are similar, the cosmological
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sensitivity of the optical depth vanishes because the volume factor cancels and
the optical depth depends only on the number of observed galaxies N . This
does not occur when we use a local luminosity function because changes in
cosmology have no effect on the local volume element. The problem with the
Keeton (2002) argument is that it basically says that if we could use galaxy
number counts to determine the cosmological model then we would not need
lensing to do so because the two are redundant. To continue our thought ex-
periment, we also have local estimates nlocal for the density of galaxies, and as
we vary the cosmology we would find that n and nlocal agree only for a limited
range of cosmological models and this would restore the cosmological sensitiv-
ity. The problem is that the comparison of near and distant measurements of
the numbers of galaxies is tricky because it depends on correctly matching the
galaxies in the presence of galaxy evolution and selection effects – in essence,
you cannot use this argument to eliminate the cosmological sensitivity of lens
surveys unless you think you understand galaxy evolution so well that you can
use galaxy number counts to determine the cosmological model, a program of
research that has basically been abandoned.

6.5 Spiral Galaxy Lenses

Discussions of lens statistics, or even lenses in general, focus on early-type
galaxies (E/S0). The reason is that spiral lenses are relatively rare. The
only morphologically obvious spirals are B0218+357 (Sc, York et al. 2005),
B1600+434 (S0/Sa, Jaunsen and Hjorth 1997), PKS1830–211 (Sb/Sc, Winn
et al. 2002a,b,c), PMNJ2004–1349 (Sb/Sc, Winn, Hall and Schechter 2003c),
and Q2237–0305 (Huchra et al. 1985). Other small separation systems may
well be spiral galaxies, but we do not have direct evidence from imaging.
There are studies of individual spiral lenses or the statistics of spiral lenses by
Maller, Flores and Primack (1997); Keeton and Kochanek (1998); Koopmans
et al. (1998); Maller et al. (2000); Trott and Webster (2002); Winn, Hall and
Schechter (2003c).

The reason lens samples are dominated by early-type galaxies is that
the early-type galaxies are more massive even if slightly less numerous
(e.g. Fukugita and Turner 1991, see Sect. 6.2). The relative numbers of
early-type and late-type lenses should be the ratio of their optical depths,
(nl/ne)(σl/σe)4, based on the comoving densities and characteristic velocity
dispersions of the early and late-type galaxies. For example, in the Kochanek
et al. (2001a,b) K-band luminosity function nl/ne � 2.2 while the ratio of the
characteristic velocity dispersions is σ∗l/σ∗e = 0.68 giving an expected ratio
of spiral to early-type lenses of 0.47. Because the typical separation of the
spiral lenses will also be smaller by a factor of (σ∗l/σ∗e)2 = 0.46, they will be
much harder to resolve given the finite resolution of lens surveys. Thus, survey
selections functions discriminate more strongly against late-type lenses than
against early-type lenses. The higher prevalence of dust in late-type lenses
adds a further bias against them in optical surveys.
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6.6 Magnification Bias

The optical depth calculation suggests that the likelihood of finding that a
zs � 2 quasar is lensed is very small (τ ∼ 10−4) , while observational sur-
veys of bright quasars typically find that of order 1% of bright quasars are
lensed. The origin of the discrepancy is the effect known as “magnification
bias” (Turner 1980), which is really the correction needed to account for the
selection of survey targets from flux limited samples. Multiple imaging al-
ways magnifies the source, so lensed sources are brighter than the population
from which they are drawn. For example, the mean magnification of all mul-
tiply imaged systems is simply the area over which we observe the lensed
images divided by the area inside the caustic producing multiple images be-
cause the magnification is the Jacobian relating area on the image and source
planes, d2β = |μ|−1d2θ. For example, an SIS lens with Einstein radius b pro-
duces multiple images over a region of radius b on the source plane (i.e. the
cross section is πb2), and these images are observed over a region of radius
2b on the image plane, so the mean multiple-image magnification is 〈μ〉 =
(4πb2)/(πb2) = 4.

Since fainter sources are almost always more numerous than brighter
sources, magnification bias almost always increases your chances of find-
ing a lens. The simplest example is to imagine a lens which always pro-
duces the same magnification μ applied to a population with number counts
N(F ) with flux F . The number counts of the lensed population are then
Nlens(F ) = τμ−1N(F/μ), so the fraction of lensed objects (at flux F ) is
larger than the number expected from the cross section if fainter objects are
more numerous than the magnification times the density of brighter objects.
Where did the extra factor of magnification come from? It has to be there to
conserve the total number of sources or equivalently the area on the source
and lens planes – you can always check your expression for the magnification
bias by computing the number counts of lenses and checking to make sure that
the total number of lenses equals the total number of sources if the optical
depth is unity.

Real lenses do not produce unique magnifications, so it is necessary to
work out the magnification probability distribution P (> μ) (the probability
of a magnification larger than μ) or its differential dP/dμ and then convolve it
with the source counts. Equivalently we can define a magnification dependent
cross section, dσ/dμ = σdP/dμ where σ is the total cross section. We can do
this easily only for the SIS lens, where a source at β produces two images with
a total magnification of μ = 2/β (21, 22) and μ > 2 in the multiple image
region, to find that P (> μ) = (2/μ)2 and dP/dμ = 8/μ3. The structure at low
magnification depends on the lens model, but all sensible lens models have
P (> μ) ∝ μ−2 at high magnification because this is generic to the statistics
of fold caustics (Part 1, Blandford and Narayan 1986).

Usually people have defined a magnification bias factor B(F ) for sources
of flux F so that the probability p(F ) of finding a lens with flux F is related
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to the optical depth by p(F ) = τB(F ). The magnification bias factor is

B(F ) = N(F )−1

∫
dμ

μ

dP

dμ
N

(
F

μ

)
(115)

for a source with flux F , or

B(m) = N(m)−1

∫
dμ

dP

dμ
N (m+ 2.5 log μ) (116)

for a source of magnitude m. Note the vanishing of the extra 1/μ factor when
using logarithmic number counts N(m) for the sources rather than the flux
counts N(F ). Most standard models have magnification probability distribu-
tions similar to the SIS model, with P (> μ) � (μ0/μ)2 for μ > μ0, in which
case the magnification bias factor for sources with power law number counts
N(F ) = dN/dF ∝ F−α is

B(F ) =
2μα−1

0

3 − α
(117)

provided the number counts are sufficiently shallow (α < 3). For number
counts as a function of magnitude N(m) = dN/dm ∝ 10am (where a =
0.4(α− 1)) the bias factor is

B(F ) =
2μ2.5a

0

2.5a− 2
. (118)

The steeper the number counts and the brighter the source is relative to any
break between a steep slope and a shallow slope, the greater the magnification
bias. For radio sources a simple power law model suffices, with α � 2.07±0.11
for the CLASS survey (Rusin and Tegmark 2001), leading to a magnification
bias factor of B � 5. For quasars, however, the bright quasars have number
counts steeper than this critical slope, so the location of the break from the
steep slope of the bright quasars to the shallower slope for fainter quasars near
B ∼ 19 mag is critical to determining the magnification bias. Figure 46 shows
an example of a typical quasar number counts distribution as compared to
several (old) models for the distribution of lensed quasars. The changes in the
magnification bias with magnitude are visible as the varying ratio between
the lensed and unlensed counts, with a much smaller ratio for bright quasars
(high magnification bias) than for faint quasars (low magnification bias) and
a smooth shift between the two limits as you approach the break in the slope
of the counts at B ∼ 19 mag.

For optically-selected lenses, magnification bias is “undone” by extinction
in the lens galaxy because extinction provides an effect that makes lensed
quasars dimmer than their unlensed counterparts. Since the quasar samples
were typically selected at blue wavelengths, the rest wavelength correspond-
ing to the quasar selection band at the redshift of the lens galaxy where it
encounters the dust is similar to the U-band. If we use a standard color excess
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E(B−V ) for the amount of dust, then the images become fainter by of order
AUE(B − V ) magnitudes where AU � 4.9. Thus, if lenses had an average
extinction of only E(B − V ) � 0.05 mag, the net magnification of the lensed
images would be reduced by about 25%. If all lenses had the same demagnifi-
cation factor f < 1 then the modifications to the magnification bias would be
straight forward. For power-law number counts N(F ) ∝ F−α, the magnifica-
tion bias is reduced by the factor fα and a E(B − V ) = 0.05 extinction leads
to a 50% reduction in the magnification bias for objects with a slope α � 2
(faint quasars) and to still larger reductions for bright quasars. Some exam-
ples of the changes with the addition of a simple mean extinction are shown
in the right panel of Fig. 46, although the levels of extinction shown there are
larger than observed in typical lenses as we discuss in Sect. 9.1. Comparisons
between the statistics of optically-selected and radio-selected samples can be
used to estimate the magnitude of the correction. The only such compari-
son found estimated extinctions consistent with the direct measurements of
Sect. 9.1 (Falco, Kochanek and Muñoz 1998). However, the ISM of real lenses
is presumably far more complicated, with a distribution of extinctions and
different extinctions for different images which may be a function of orienta-
tion and impact parameter relative to the lens galaxy, for which we have no
good theoretical model.

The flux of the lens galaxy also can modify the magnification bias for
faint quasars, although the actual sense of the effect is complex. The left
panel Fig. 46 shows the effect of dropping lenses in which the lens galaxy
represents some fraction of the total flux of the lensed images. The correction
is unimportant for bright quasars because lens galaxies with B < 19 mag are
rare. In this picture, the flux from the lens galaxy leads to the loss of lenses
because the added flux from the lens galaxy makes the colors of faint lens
galaxies differ from those of quasars so they are never selected as quasars to
begin with. Alternatively, if one need not worry about color contamination,
then the lens galaxy increases the magnification bias by supplying extra flux
that makes lensed quasars brighter.

Any other selection effect, such as the dynamic range allowed for flux
ratios between images as a function of their separation will also have an
effect on the magnification bias. Exactly how the effect enters depends on
the particular class of images being considered. For example, in the SIS
lens (or more generally for two-image lenses), a limitation on the detectable
flux ratio 0 < fmin < 1 sets a minimum detectable magnification μmin =
2(1 + fmin)/(1 − fmin) > μ0 = 2. Since most lens samples have significant
magnification bias, which means that most lenses are significantly magnified,
such flux limits have only modest effects. The other limit, which cannot be
captured in the SIS model, is that almost all bright images are merging pairs
on folds (or triplets on cusps) so the image separation decreases as the mag-
nification increases. The contrast between the merging images and any other
images also increases with increasing magnification – combined with limits
on the detectability of images, these lead to selection effects against highly
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magnified images. This is also usually a modest effect – while magnification
bias is important, the statistics are dominated by modestly magnified sys-
tems rather than very highly magnified images. In fact, there have been few
attempts at complete studies of the complicated interactions between finding
quasars, finding lenses, selection effects and magnification bias. There is an
early general study by Kochanek (1991a,b,c) and a detailed practical appli-
cation of many of these issues to the SDSS survey by Pindor et al. (2003).
Unfortunately, Pindor et al. (2003) seem to arrive at a completeness estimate
from their selection model that is too high given the number of lenses they
found in practice. Some of this may be due to underestimating the luminosity
of lens galaxies, the effects of the lens galaxy or extinction on the selection
of quasars or the treatment of extended, multicomponent lenses compared
to normal quasars in the photometric pipeline. These difficulties, as well as
the larger size of the present radio-selected lens samples, are the reason that
almost all recent statistical studies have focused exclusively on radio lenses.

The standard magnification bias expressions ((115) and (116)) are not
always correct. They are correct for the statistics of lenses selected from source
populations for which the total flux of the source (including all images of a
lensed source) is defining F (or m). This is true of most existing surveys –
for example the CLASS radio survey sources were originally selected from
single dish observations with very poor resolution compared to typical image
separations (see Browne et al. 2003). If, however, the separation of the images
is large compared to the resolution of the observations and the fluxes of the
images are considered separately, then the bias must be computed in terms of
the bright image used to select sources to search for additional images. This
typically reduces the bias. More subtle effects can also appear. For example,
the SDSS survey selects quasar candidates based on the best fit point-source
magnitudes, which will tend to be an underestimate of the flux of a resolved
lens. Hence the magnification bias for lenses found in the SDSS survey will
be less than in the standard theory. Samples selected based on more than
one frequency can have more complicated magnification biases depending on
the structure of the multidimensional number counts (Borgeest, von Linde
and Refsdal 1991; Wyithe, Winn and Rusin 2003). The exact behavior is
complex, but the magnification bias can be tremendously increased if the
fluxes in the bands are completely uncorrelated or tightly but nonlinearly
correlated. For example, if the luminosities in bands A and B are related by
tight, nonlinear correlation of the form LA ∝ L

1/2
B , then the lensed examples

of these objects will lie off the correlation. At present, there are too few deep,
wide-area multiwavelength catalogs to make good use of this idea, but this is
changing rapidly.

While most studies assume lenses are spherical when making statistical
studies, there are significant and trivially observable consequences of elliptic-
ity in lens statistics namely, the four image lenses, whose existence in obser-
vational samples is largely due to the differences in the magnification bias
between quads and doubles. We noted earlier that the expectation from the
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cross section is that four-image lenses should represent order ε2Ψ ∼ γ2 ∼ 0.01
of lenses where εΨ is the ellipticity of the lens potential. Yet in Sect. 2 we saw
that four-image lenses represent roughly one third of the observed population.
Most of this difference is a consequence of the different magnification biases
of the two image multiplicities. In general, the ellipticity of the lenses has
little effect on the expected number of lenses, allowing the use of circular lens
models for statistical studies that are uninterested in the morphologies of the
images (e.g. Keeton, Kochanek and Seljak 1997; Rusin and Tegmark 2001;
Chae 2003).

While simple models generally capture the total magnification bias of a
sample, the magnification bias depends heavily on the number of images.
Figure 43 shows the image magnification contours for an SIS lens in an ex-
ternal shear on both the image and source planes. The highly magnified re-
gions are confined to lie near the critical line. If we Taylor expand the inverse
magnification radially, then μ−1 = Δx|dμ−1/dx| where Δx is the distance
from the critical line, so the magnification drops inversely with the distance
from the critical line. If we Taylor expand the lens equations, then we find
that the change in source plane coordinates is related to the change in im-
age plane coordinates by Δβ = μ−1Δx ∝ μ−2. Thus, if L is the length of

Fig. 43. Magnification contours on the image (left) and source (right) planes for
an SIS in an external shear. The heavy solid contours show the tangential critical
line (left) and its corresponding caustic (right). On the image plane (left), the light
curves are magnification contours. These are positive outside the critical curve and
negative inside the critical curve. The images found in a four-image lens are all found
in the region between the two dashed contours – when two images are merging on
the critical line, the other two images lie on these curves. On the source plane the
solid (dashed) curves show the projections of the positive (negative) magnification
contours onto the source plane. Note that the high magnification regions are domi-
nated by the four-image systems with the exception of the small high magnification
regions found just outside the tip of each cusp
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the astroid curve, the probability of a magnification larger than μ scales as
P (> μ) ∝ μ−2L/|dμ−1/dx|. This applies only to the four image region, be-
cause the only way to get a high magnification in the two-image region is for
the source to lie just outside the tip of a cusp. The algebra is overly complex to
present, but the generic result is that the region producing magnification μ ex-
tends μ−2 from the cusp tip but has a width that scales as μ−1/2, leading to an
overall scaling that the asymptotic cross section declines as P (> μ) ∝ μ−7/2

rather than P (> μ) ∝ μ−2. This can all be done formally (see Blandford and
Narayan 1986) so that asymptotic cross sections can be derived for any model
(e.g. Kochanek and Blandford 1987; Finch et al. 2002), but a reasonable ap-
proximation for the four-image region is to compute the magnification, μ0,
for the cruciform lens formed when the source is directly behind the lens and
then use the estimate that P (> μ) = (μ0/μ)2. Unfortunately, such simple
estimates are not feasible for the two-image region. These distributions are
relatively easy to compute numerically, as in the example shown in Fig. 44.

Because the minimum magnification increases ∝ γ−1 even as the cross sec-
tion decreases as ∝ γ2, the expected number of four-image lenses in a sample
varies much more slowly with ellipticity than expected from the cross section.
The product σ4B(F ) ∝ γ2μα−1

0 , of the four-image cross section, σ4, and the

Fig. 44. The integral magnification probability distributions for a singular isother-
mal ellipsoid with an axis ratio of q = 0.7 normalized by the total cross section
for finding two images. Note that the total four-image cross section is only of order
ε2Ψ ∼ (ε/3)2 ∼ 0.01 of the total, but that the minimum magnification for the four-
image systems (μmin ∼ 1/ε ∼ 10) is much larger than that for the two-image systems
(μmin ∼ 2 just as for an SIS). The entire four-image probability distribution is well
approximated by the P (> μ) ∝ μ−2 power law expected for fold caustics, while the
two-image probability distribution is steeper since highly magnified images can only
be created by the cusps. Figure courtesy of D. Rusin
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magnification bias, B(F ), scales as γ3−α ∝ γ for the CLASS survey (α � 2),
which is a much more gentle dependence on ellipticity than the quadratic
variation expected from the cross section. There is a limit, however, to the
fraction of four-image lenses, as shown in Fig. 45. If the potential becomes too
flat, the astroid caustic extends outside the radial caustic (Fig. 18), to produce
three-image systems in the “disk” geometry rather than additional four-image
lenses. In the limit that the axis ratio goes to zero (the lens becomes a line),
only the disk geometry is produced. The existence of a maximum four-image
lens fraction, and its location at an axis ratio inconsistent with the observed
axis ratios of the dominant early-type lenses has made it difficult to explain
the observed fraction of four image lenses (King and Browne 1996; Kochanek
1996a,b; Keeton, Kochanek and Seljak 1997; Keeton and Kochanek 1998;
Rusin and Tegmark 2001). Recently, Cohn and Kochanek (2004) argued that
satellite galaxies of the lenses provide the explanation by somewhat boosting
the fraction of four-image lenses while at the same time explaining the exis-
tence of the more complex lenses like B1359+154 (Myers et al. 1999; Rusin et
al. 2001) and PMNJ0134–0931 (Winn et al. 2002a,b,c; Keeton and Winn 2003)
formed by having multiple lens galaxies with more complex caustic structures.
It is not, however, clear in the existing data that four-image systems are more
likely to have satellites to the lens galaxy than two-image systems as one
would expect for this explanation.

Gravitational lenses can produce highly magnified images without mul-
tiple images only if they are highly elliptical or have a low central den-
sity. The SIS lens has a single-image magnification probability distribution

Doubles

Quads

Cusps

Fig. 45. The expected number of two-image, four-image and three-image (disk or
cusp) lenses as a function of axis ratio f for the CLASS sample. From Rusin and
Tegmark (2001)
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Fig. 46. Examples of selection effects on optically selected lens samples. The heavy
solid curves in the two panels shows a model for the magnitude distribution of
optically-selected quasars. The light curves labeled ΩM = 1 and λ0 = 1 show the
distribution of lensed quasars for flat cosmologies that are either pure matter or pure
cosmological constant. The change in the ratio between the lensed curves and the
unlensed curves illustrates the higher magnification bias for bright quasars where
the number count distribution is steeper than for faint quasars. In the left panel the
truncated curves show the effect of losing the lensed systems where the lens galaxy
is Δm = 1, 2 or 3 magnitudes fainter than the quasars. Once surveys are searching
for lensed quasars with B >∼ 20 mag, the light from the lens galaxy becomes an
increasing problem, particularly since the systems with the brightest lens galaxies
will also have the largest image separations that would otherwise make them easily
detected. In the right panel we illustrate the effect of adding a net extinction of
AB = 1 or 2 mag from dust in the lens galaxies. These correspond to larger than
expected color excesses of E(B − V ) 	 0.2 and 0.4 mag respectively. Note how the
extinction “undoes” the magnification bias by shifting the lensed distributions to
fainter magnitudes

of τdP/dμ = 2πb2/(μ− 1)3 with μ < 2 compared to τdP/dμ = 2πb2/μ3 with
μ ≥ 2 for the multiply imaged region, so single images are never magnified
by more than a factor of 2. For galaxies, where we always expect high cen-
tral densities, the only way to get highly magnified single images is when the
astroid caustic extends outside the radial caustic (Fig. 18). A source just out-
side an exposed cusp tip can be highly magnified with a magnification prob-
ability distribution dP/dμ ∝ μ−7/2. Such single image magnifications have
recently been a concern for the luminosity function of high redshift quasars
(e.g. Wyithe 2004; Keeton, Kuhlen and Haiman 2005) and will be the high
magnification tail of any magnification perturbations to supernova fluxes (e.g.
Dalal et al. 2003). As a general rule for galaxies, the probability of a single
image being magnified by more than a factor of two is comparable to the
probability of being multiply imaged.
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6.7 Cosmology With Lens Statistics

The statistics of lenses, in the sense of the number of lenses expected in a sam-
ple of sources as a function of cosmology, is a volume test of the cosmological
model because the optical depth (at least for flat cosmologies) is proportional
to D3

s . However, the number of lenses also depends on the comoving density
and mass of the lenses (n∗, σ∗ and α in the simple SIS model). While n∗ could
plausibly be estimated locally, the σ4

∗ dependence on the mass scale makes it
very difficult to use local estimates of galaxy kinematics or masses to normal-
ize the optical depth. The key step to eliminating this problem is to note that
there is an intimate relation between the cross section, the observed image
separations and the mass scale. While this will hold for any mass model, the
SIS model is the only simple analytic example. The mean image separation for
the lenses should be independent of the cosmological model for flat cosmolo-
gies (and only weakly dependent on it otherwise). Thus, in any lens sample
you can eliminate the dependence on the mass scale by replacing it with the
observed mean image separation, τSIS ∝ n∗〈Δθ〉2D3

s . Full calculations must
include corrections for angular selection effects. Most odd results in lens cos-
mology arise in calculations that ignore the close coupling between the image
separations and the cross section.

In practice, real calculations are based on variations of the maximum like-
lihood method introduced by Kochanek (1993a,b,c, 1996a,b). For each lens i
you compute the probability pi that it is lensed including magnification bias
and selection effects. The likelihood of the observations is then

lnL0 =
∑

lenses

ln pi +
∑

unlensed

ln(1 − pi) �
∑

lenses

ln pi −
∑

unlensed

pi, (119)

where ln(1 − pi) � −pi provided pi � 1. This simply encodes the likelihood
of finding the observed number of lenses given the individual probabilities
that the objects are lensed. Without further information, this likelihood could
determine the limits on the cosmological model only to the extent we had
accurate prior estimates for n∗ and σ∗.

If we add, however, a term for the probability that each detected lens has
its observed separation (including any selection effects)

lnL = lnL0 +
∑

lensed

ln
(
pi(Δθi)

pi

)
, (120)

then the lens sample itself can normalize the typical mass scale of the lenses
(Kochanek 1993a,b,c). This has two advantages. First, it eliminates any sys-
tematic problems arising from the dynamical normalization of the lens model
and its relation to the luminosity function. Second, it forces the cosmological
estimates from the lenses to be consistent with the observed image separations
– it makes no sense to produce cosmological limits that imply image separa-
tions inconsistent with the observations. In theory the precision exceeds that
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of any local calibration very rapidly. The fractional spread of the separations
about the mean is ∼ 0.7, so the fractional uncertainty in the mean separation
scales as 0.7/N1/2 for a sample of N lenses. Since the cross section goes as
the square of the mean separation, the uncertainty in the mean cross section
1.4/N1/2 exceeds any plausible accuracy of a local normalization for σ∗ (10%
in σ∗, or 20% in 〈θ〉 ∝ σ2

∗, or 40% in τ ∝ σ4
∗) with only N � 10 lenses.

Any other measurable property of the lenses can be added to the like-
lihood, but the only other term that has been seriously investigated is the
probability of the observed lens redshift given the image separations and the
source redshift (Kochanek 1992a,b, 1996a,b; Helbig and Kayser 1996; Ofek,
Rix and Maoz 2003). In general, cosmologies with a large cosmological con-
stant predict significantly higher lens redshifts than those without, and in
theory this is a very powerful test because of the exponential cutoff in (114).
The biggest problem in actually using the redshift test, in fact so big that
it probably cannot be used at present, is the high incompleteness of the lens
redshift measurements (Sect. 2). There will be a general tendency, even at
fixed separation, for the redshifts of the higher redshift lens galaxies to be the
ones that are unmeasured. Complete samples could be defined for a separation
range, usually by excluding small separation systems, but a complete analysis
needs to include the effects of groups and cluster boosting image separations
beyond the splitting produced by an isolated galaxy. For example, how do we
include Q0957+561 with its separation of 6.′′2 that is largely due to the lens
galaxy but has significant contributions from the surrounding cluster?

6.8 The Current State

Recent analyses of lens statistics have focused exclusively on the CLASS flat
spectrum radio survey (Browne et al. 2003). Chae et al. (2002); Chae (2003)
and Mitchell et al. (2004) focus on estimating the cosmological model and
find results in general agreement with estimates from Type Ia supernovae (e.g.
Riess et al. 2004). The general approach of both groups is to use variants of the
maximum likelihood methods described above in Sect. 6.7. Chae (2003) uses
an obsolete estimate of the galaxy luminosity function combined with a Faber–
Jackson relation and the variable transformation of (103) but normalized the
velocity scale using the observed distribution of lens separations. Mitchell et al.
(2004) use the true velocity dispersion function from the SDSS survey (Sheth
et al. 2003) and incorporate a Press-Schechter (1974) model for the evolution
of the velocity function. Chae (2003) used ellipsoidal galaxies, although this
has little cosmological effect, while Mitchell et al. (2004) considered only SIS
models. Figure 47 shows the cosmological limits from Mitchell et al. (2004),
which are typical of the recent results. There are also attempts to use lens
statistics to constrain dark energy (e.g. Chae et al. 2004; Kuhlen, Keeton
and Madau 2004), but far larger, well-defined samples are needed before the
resulting constraints will become interesting.
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Fig. 47. (Top) Likelihood functions for the cosmological model from Mitchell et al.
(2004) using the velocity function of galaxies measured from the SDSS survey and
a sample of 12 CLASS lenses. The contours show the 68, 90, 95 and 99% confidence
intervals on the cosmological model. In the shaded regions the cosmological distances
either become imaginary or there is no big bang. (Bottom) The histogram shows
the separation distribution of the 12 CLASS lenses used in the analysis and the
curve shows the distribution predicted by the maximum likelihood model including
selection effects
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Chae and Mao (2003); Davis, Huterer and Krauss (2003) and Ofek, Rix
and Maoz (2003) focused on galaxy properties and evolution in a fixed, con-
cordance cosmology rather than on determining the cosmological models.
Mitchell et al. (2004) compared models where the lenses evolved following
the predictions of CDM models in comparison to non-evolving models. Be-
cause lens statistical estimates are unlikely to compete with other means of
estimating the cosmological models, these are more promising applications of
gravitational lens statistics for the future. Attempts to estimate the evolution
of the lens population usually allow the n∗ and σ∗ parameters of the velocity
function (103) to evolve as power laws with redshift. Mitchell et al. (2004),
Fig. 42) point out that CDM halo models make specific predictions for the
evolution of the velocity function that have a different structure from simple
power laws in redshift, but with the present data the differences are proba-
bly unimportant. All these evolution studies came to the conclusion that the
number density of the σv ∼ σ∗ galaxies which dominate lens statistics has
changed little (∼ ±50%) between the present day and redshift unity.

I have three concerns about these analyses and their focus on the “com-
plete” CLASS lens samples. First, a basic problem with the CLASS survey
is that we lack direct measurements of the redshift distribution of the source
population forming the lenses (e.g Marlow et al. 2000; Muñoz et al. 2003).
In particular, Muñoz et al. (2003) note that the radio source population is
changing radically from nearly all quasars to mostly galaxies as you approach
the fluxes of the CLASS source population. This makes it dangerous to extra-
polate the source population redshifts from the brighter radio fluxes where
the redshift samples are nearly complete to the fainter samples where they
are not. The second problem is that no study has a satisfactory treatment of
the lenses with satellites or associated with clusters. All the analyses use iso-
lated lens models and then either include lenses with satellites but ignore the
satellites or drop lenses with satellites and ignore the fact that they have been
dropped. The analysis by Cohn and Kochanek (2004) of lens statistics with
satellites shows that neither approach is satisfactory – dropping the satellites
biases the results to underestimate cross sections while including them does
the reverse. Cohn and Kochanek (2004) concluded that including the sys-
tems with satellites probably has fewer biases than dropping them. A similar
problem probably arises from the effects of the group halos to which many of
the lenses belong (e.g. Keeton et al. 2000b; Fassnacht and Lubin 2002). My
third concern is that the separations of the radio lenses seem to be systemati-
cally smaller than the optically selected lenses even though the Optical HST
Snapshot Lens Survey (Maoz et al. 1993) had the greatest sensitivity to small
separation systems. It is possible that this is simply due to selection effects
in the optical samples, but I have seen no convincing scenario for producing
such a selection effect. We see no clear correlation of extinction with image
separation (see Sect. 9.1), emission from the lens galaxy is less important for
small separation systems than for large separation systems, and the selection
function due to the resolution of the observations is fairly simple to model.
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On the other hand, the various lens samples may all be consistent. One
way to compare the different data sets is to non-parametrically construct the
velocity function from the observed image separations of the samples. To do
this we assume an SIS lens model for the conversion from image separations
to circular velocities, and then adopt the standard non-parametric methods
used to construct luminosity functions from redshift surveys to construct the
velocity function from the image separations (Kochanek 2003a,b,c). The re-
sults for the flat-spectrum lens surveys (CLASS, JVAS, PANELS), all radio
surveys and all radio surveys plus the quasar lenses are shown in Fig. 48.
We normalized the estimates to the density at vc = 300 km/s to eliminate
any dependence on the cosmological model. The lens data can estimate the
velocity function from roughly vc ∼ 100 km/s to 500 km/s. At lower velocities
the finite resolution of the observations makes the uncertainties in the density
explode, and at higher velocities the surveys have not searched large enough
angular regions around the lens galaxies. The shape of the velocity function is
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Fig. 48. Non-parametric reconstructions of the velocity function from the observed
separations of gravitational lenses assuming an SIS lens model. The velocity func-
tions are all normalized to the bin centered at 300 km/s. The filled squares use only
the lenses in the flat spectrum radio surveys, the triangles use all radio-selected
lenses and the pentagons include all radio lenses and all quasar lenses. The horizon-
tal error bars on the filled squares show the bin widths. The triangles and pentagons
are horizontally offset from the squares to make them more visible. The curves show
the velocity function estimated from the 2MASS sample from Fig. 40. The horizontal
scale at the top of the figure shows the maximum separation produced by a lens of
the corresponding circular velocity. The mean separation produced by such a lens
will be one-half the maximum
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consistent with local estimates (Fig. 40) except in the highest circular velocity
bin where we begin to see the contribution from clusters we will consider in
Sect. 7. Figure 48 also makes it clear why constraints on the evolution of the
lenses are so weak – evolution estimates basically try to compare the low-
redshift separation distribution to the high redshift separation distribution,
and we simply do not have large enough lens samples to begin subdividing
them in redshift (to say nothing of dealing with unmeasured redshifts) and
still have small statistical uncertainties.

7 What Happened to the Cluster Lenses?

One would think from the number of conference proceeding covers featuring
HST images of cluster arcs that these are by far the most common type of
lens. In fact, this is an optical delusion created by the ease of finding the rich
clusters even though they are exponentially rare. The most common kind of
lens is the one produced by a typical massive galaxy – as we saw in Fig. 48.
For a comparison, Fig. 49 shows several estimates of the velocity function
based on standard CDM mass functions and halo models (from Kochanek
and White 2001 and Kochanek 2003a,b,c, using the Sheth and Tormen 1999
mass function combined with the NFW halo model from Sect. 4.1). We see
for high masses or circular velocities that the predicted distribution of halos
agrees with the observed distribution of clusters. At the velocities typical of
galaxies, the observed density of galaxies is nearly an order of magnitude
higher than expected for a CDM halo mass function. At very low velocities
we expect many more halos than we observe galaxies. The velocity function
estimated from the observed image separations matches that of galaxies with
the beginnings of a tail extending onto the distribution of clusters at the high
velocity end (Fig. 49). At low velocities the limited resolution of the present
surveys means that the current lens data does not probe the low velocity
end very well. In this section we discuss the difference between cluster and
galaxy lenses and explain the origin of the break between galaxies and clusters
observed. In Sect. 8 on CDM substructure we will discuss the divergence at
low circular velocities.

The standard halo mass function is roughly a power law with dn/dM ∼
M−1.8 combined with an exponential cutoff at the mass scale corresponding
to the largest clusters that could have formed at any epoch (e.g. the Sheth and
Tormen 1999 halo mass function). Typically these rich clusters have internal
velocity dispersions above 1000 km/s and can produce image splittings of
∼ 30 arcsec. If halo structure was independent of mass, then we would expect
the separation distribution of gravitational lenses to show a similar structure
– a power law out to the mass scale of rich clusters followed by an exponential
cutoff. In Fig. 50 we compare the observed distribution of radio lenses to that
expected from the halo mass function assuming either NFW halos or NFW
halos in which the baryons, representing 5% of the halo mass has cooled
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Fig. 49. The expected circular velocity function dn/d log vc of CDM halos. The
lowest dashed curve labeled NFW vvir shows the velocity function using the NFW
halo virial velocity vvir for the circular velocity (see Sect. 4.1). The middle dashed
curve labeled NFW vc,max shows the velocity function if the peak circular velocity
of the halo is used rather than the virial velocity. The upper dashed curve is a model
in which the baryons of halos with M <∼ 1013M� cool, raising the central density
and circular velocity. The solid curve with the points shows the estimate of the
local velocity function of galaxies (Fig. 40) and the solid curve extending to higher
velocities is an estimate of the local velocity function of groups and clusters

and condensed into the centers of the halos (Kochanek and White 2001). We
would find similar curves if we used simple SIS models rather than these
more complex CDM-based models (Keeton et al. 1998; Porciani and Madau
2000). In practice, the most complete survey for multiply imaged sources,
the CLASS survey, found a largest separation of 4.′′5 (B2108+213) despite
carefully checking candidates out to separations of 15.′′0 (Phillips et al. 2001).
The largest lens found in a search for multiply imaged sources has an image
separation of roughly 15 arcsec (SDSS1004+4112, Inada et al. 2003). The
overall separation distribution (see Fig. 50) has a sharp cutoff on scales of
3 arcsec corresponding to galaxies with velocity dispersions of ∼ 250 km/s.
The principal searches for wide separation lenses are Maoz et al. (1997); Ofek
et al. (2001) and Phillips et al. (2001), although most surveys searched for
image separations of at least 6.′′0. A large number of studies focused only
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Fig. 50. Predicted image separation distributions assuming the structure of halos
does not change with halo mass. The heavy solid line shows the prediction for pure
NFW models while the light solid (dashed) curves shows the predictions after 5% of
the baryons have cooled into a disk (a disk plus a bulge with 10% of the baryonic
mass in the bulge). The curves labeled CLASS (for the CLASS survey lenses) and
all radio (for all radio selected lenses) show the observed distributions

on the properties of lenses produced by CDM mass functions (e.g. Narayan
and White 1988; Wambsganss et al. 1995, 1998; Kochanek 1995a,b; Maoz et
al. 1997; Flores and Primack 1996; Mortlock and Webster 2000a,b,c; Li and
Ostriker 2002; Keeton and Madau 2001b; Wyithe, Turner and Spergel 2001).
We will not discuss these in detail because such models cannot reproduce
the observed separation distributions of lenses. Most recent analyses allow for
changes in the density distributions between galaxies and clusters.

Physically the important difference between galaxies and clusters is that
the baryons in the galaxies have cooled and condensed into the center of the
halo to form the visible galaxy. As the baryons cool, they also drag some of
the dark matter inward through a process known as adiabatic compression
(Blumenthal et al. 1986), although this is less important than the cooling.
As we show in Fig. 51, standard dark matter halos are terrible lenses because
their central cusps (ρ ∝ r−γ and 1.5 ≥ γ ≥ 1) are too shallow. In this case,
a standard NFW halo with a total mass of 1012M� and a concentration of
c = 8 (see (60–62)) at a redshift of zl = 0.5 is unable to produce multiple
images of a source at redshift zs = 2 despite having an asymptotic circular
velocity of nearly 200 km/s. If we now assume that 5% of the mass is in
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Fig. 51. (Top) The rotation curve and (bottom) the bending angle α(x) for a
1012M� halo at zl = 0.5 with a concentration of c = 8 lensing a source at zs = 2.0.
The dashed curves show the results for the initial NFW halo, while the solid curves
show the results after allowing 5% of the mass to cool conserving angular momentum
(spin parameter λ = 0.04) and adiabatically compressing the dark matter. The three
solid curves show the effect of putting 0%, 10% or 20% of the baryonic mass into
a central bulge. Higher bulge masses raise the central circular velocity and steepen
the central deflection profile. The final disk scale length is rd. Compare these to the
bending angles of our simple models in Figs. 10–14
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baryons starting with a typical halo angular momentum and then cooling
into a disk of radius rd while conserving angular momentum we see that the
rotation curve becomes flatter and the galaxy is now able to produce multiple
images. Putting some fraction of the mass into a still more compact, central
bulge make the lens even more supercritical and the bending angle diagram
begins to resemble that of an SIS lens (see Fig. 11). Thus, the cooling of the
baryons converts a sub-critical dark matter halo into one capable of producing
multiple images.

The key point is that only intermediate mass halos contain baryons which
have cooled. High mass halos (groups and clusters) have cooling times longer
than the Hubble time so they have not had time too cool (e.g. Rees and
Ostriker 1977). Most low mass halos also probably resemble dark matter halos
more than galaxies with large quantities of cold baryons because they lost their
baryons due to heating from the UV background during the initial period of
star formation (e.g. Klypin et al. 1999; Bullock, Kravtsov and Weinberg 2000;
see Sect. 8). Here we ignore the very low mass halos and consider only the
distinction between galaxies and groups/clusters. The fundamental realization
in recent studies (e.g. Porciani and Madau 2000; Kochanek and White 2001;
Kuhlen, Keeton and Madau 2004; Li and Ostriker 2003) is that introducing
a cooling mass scale Mc below which the baryons cool to form galaxies and
above which they do not supplies the explanation for the difference between
the observed separation distribution of lenses and naive estimates from halo
mass functions.

Once we recognize the necessity of introducing a distinction between clus-
ter and galaxy mass halos, we can use the observed distribution of lens sep-
arations to constrain the mass scale of the break and the physics of cooling.
Figure 52 shows the most common version of these studies, where separation
distributions are computed as a function of the cooling mass scale Mc. We
show the separation distributions for various cooling mass scales assuming
that 5% of the mass cools into a disk plus a bulge with 10% of the baryonic
mass in the bulge for all halos with M < Mc. If the cooling mass is either too
low or too high we return to the models of Fig. 50, while at some intermediate
mass scale we get the break in the separation distribution to match the ob-
served angular scale. For these parameters, the optimal cooling mass scale is
Mc � 1013M� (Fig. 52). This agrees reasonably well with Porciani and Madau
(2000) and Kuhlen, Keeton and Madau (2004) who found a somewhat higher
mass scale Mc � 3 × 1013M� using SIS models for galaxies. Cosmological
hydrodynamic simulations by Pearce et al. (1999) also found that approxi-
mately 50% of the baryons had cooled on mass scales near 1013M�. Note,
however, that the mass scale needed to fit the data depends on the assumed
fraction of the mass in cold baryons. With fewer cold baryons a halo becomes
a less efficient lens producing smaller image separations so Mc must increase
to keep the break at the observed scale. If the cold baryon fraction is too
low (<∼ 1%), it becomes impossible to explain the data at all. Crudely, the
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Fig. 52. (Top) Predicted separation distributions as a function of the cooling
mass scale Mc in which 5% of the mass cools with 90% of the cooled mater-
ial in a disk and 10% in a bulge. The dashed curves show the distributions for
Mc = 1012M�, 3 × 1012M� and 1013M�, while the solid curves show the distribu-
tions for Mc = 3×1013M�, 1014M� and 3×1014M�. The heavy solid (dashed) curves
shows the observed distribution of the CLASS (all radio-selected) lenses. (Bottom)
The Kolmogorov–Smirnov probability, PKS , of fitting the observed distribution of
CLASS lenses as a function of the cooling mass scale Mc. The heavy solid curves
show the results when 5% of the mass cools without (with) 10% of that mass in a
bulge. The heavy dashed curves show the results for models where lower (1% and
2%) or higher (10% and 20%) halo mass fractions cool, where the optimal cooling
mass scale Mc decreases as the cold baryon fraction increases. For comparison, the
light dashed line shows the cooling time tcool in units of 10 Gyr for the radius en-
closing 50% of the baryonic mass in the standard model. The light solid line shows
the average formation epoch, 〈tform〉, also in units of 10 Gyr
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cooling mass scale depends exponentially on the cold baryon fraction with
logMc/M� � 13.6 − (cold fraction)/0.15.

The mass scale of the break and the cold baryon fraction are not indepen-
dent parameters and should be derivable from the physics of the cooling gas.
In its full details this must include not only the cooling of the gas but also
reheating of the gas in galaxies due to feedback from star formation. Figure 52
also shows the dependence of the cooling time scale and the formation time
scale for halos of mass Mc. For this model (based on the semi-analytic models
of Cole et al. 2000), the cooling time becomes shorter than the age of the
halo very close to the mass scale required to explain the distribution of im-
age separations. These semi-analytic models suggest an alternate approach
in where the cooling mass scale need not be added as an ad hoc parameter.
We could instead follow the semi-analytic models and use the cooling func-
tion to determine the relative cooling rates of halos with different masses.
We leave as the free parameter, the final cosmological density in cold baryons
Ωb,cool ≤ Ωb � 0.04 (i.e. some baryons may never cool or cool and are reheated
by feedback). Low Ωb,cool models have difficulty cooling, making them equiva-
lent to models with a high cooling mass scale (see Fig. 53). High Ωb,cool models
cool easily, making them equivalent to models with a high cooling mass scale.
Models with 0.015 <∼ Ωb,cool <∼ 0.025 agree with the observations (see Fig. 53).
The result depends little on whether we add a bulge, fit the CLASS sample
or all radio lenses or adjust the cooling curve by a factor of two. Thus, the
characteristic scale of the gravitational lens separation distribution is a probe
of the cosmological baryon density Ωb and the fraction of those baryons that
cool in the typical massive galaxy. While it would be premature to use this
as a method for determining Ωb, it is interesting to note that our estimate
is significantly below current cosmological estimates that Ωb � 0.04 which
would be consistent with feedback from star formation and other processes
preventing all baryons from cooling, but well above the estimates of the cold
baryon fraction in local galaxies (0.0045 <∼ Ωb,cool <∼ 0.0068, Fukugita, Hogan
and Peebles 1998). These are also the models generating the velocity function
estimate with baryonic cooling in Fig. 49. The cooling of the baryons shifts
the more numerous low velocity halos to higher circular velocities so that the
models match the observed density of σ∗ galaxies. The models do not correctly
treat the break region because they allow “over-cooled” massive groups, but
then merge back onto the peak circular velocity distribution of the CDM halos
at higher velocities. Since the models allow all low mass halos to cool, there
is still a divergence at low circular velocities which is closely related to the
problem of CDM substructure we discuss in Sect. 8.

7.1 The Effects of Halo Structure and the Power Spectrum

Estimating the structure of clusters using gravitational lensing is primarily a
topic for Part 3, so we include only an abbreviated discussion of lensing by
clusters here. For a fixed cosmological model, two parameters largely control
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Fig. 53. (Top) Predicted separation distributions as a function of the cosmological
cold baryon density Ωb,cool. The dashed curves show the results for Ωb,cool = 0.003,
0.006 and 0.009 (right to left at large separation) and the solid curves show the
results for Ωb,cool = 0.0012, 0.015, 0.018, 0.021, 0.024, 0.030, 0.045 and 0.060 (from
left to right at large separation). The models have 10% of the cold baryons in a
bulge. The heavy solid (dashed) curves show the observed distribution of CLASS
(all radio) lenses. (Bottom) The Kolmogorov–Smirnov probability, PKS , of fitting
the observed distribution of lenses as a function of the cold baryon density Ωb,cool.
The squares (triangles) indicate models with no bulge (10% of the cooled material
in a bulge), and the solid (dashed) lines correspond to fitting the CLASS (all radio)
lenses. For comparison, the horizontal error bar is the estimate by Fukugita, Hogan
and Peebles 1998 for the cold baryon (stars, remnants, cold gas) content of local
galaxies. The vertical line marks the total baryon content of the concordance model
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the abundance of cluster lenses. First, the abundance of clusters varies nearly
exponentially with the standard normalization σ8 � 1 of the power spectrum
on 8h−1 Mpc scales. Second, the cross sections of the individual clusters de-
pend strongly on the exponent of the central density cusp of the cluster. There
are recent studies of these issues by Li and Ostriker (2002, 2003); Huterer and
Ma (2004); Kuhlen, Keeton and Madau (2004); Oguri et al. (2004), and Oguri
and Keeton (2004).

We can understand the general effects of halo structure very easily from
our simple power law model in (9). In Sect. 3 we normalized the models to
have the same Einstein radius, but we now want to normalize them so that
all have the same total mass interior to some much larger radius R0. This is
roughly what happens when we keep the virial mass and break radius of the
halo constant but vary the central density exponent ρ ∝ r−n. The deflection
profile becomes

α(θ) =
b20
R0

(
θ

R0

)2−n

, (121)

where b0 � R0 sets the mass interior to R0 and we recover our old example
if we let b = b0 = R0. The typical image separation is determined by the tan-
gential critical line at θt = R0(b0/R0)2/(n−1), so more centrally concentrated
lenses (larger n) produce larger image separations when b0/R0 � 1. The radial
caustic lies at βr = f(n)θt where f(n) is a not very interesting function of the
index n, so the cross section for multiple imaging σ ∝ β2

r ∝ R2
0(b0/R0)4/(n−1)

– for an SIS profile σ ∝ b4/R2
0, while the cross section for a Moore profile

(n = 3/2) σ ∝ b8/16R6
0 is significantly smaller.

We cannot go to the limit of an NFW profile (n = 1) because our power law
model has a constant surface density rather than a logarithmically divergent
surface density in the limit as n → 1, but we can see that as the density
profile becomes shallower the multiple image cross section drops rapidly when
the models have constant mass inside a radius which is much larger than
their Einstein radius. As a result, the numbers of group or cluster lenses
depends strongly on the central exponent of the density distribution even
when the mass function of halos is fixed. Magnification bias will weaken the
dependence on the density slope because the models with shallower slopes
and smaller cross sections will generally have higher average magnifications.
The one caveat to these calculations is that many groups or clusters will have
central galaxies, and the higher surface density of the galaxy can make the
central density profile effectively steeper than the CDM halo in isolation.

7.2 Binary Quasars

Weedman et al. (1982) reported the discovery of the third “gravitational”
lens, Q2345+007, a pair of z = 2.15 quasars separated by 7.′′3. The optical
spectra of the two images are impressively similar (e.g. Small et al. 1997), but
repeated attempts to find a lens have failed in both the optical (e.g. Pello



Part 2: Strong Gravitational Lensing 219

et al. 1996) and with X-rays (Green et al. 2002). Q2345+007 is the founding
member of a class of objects seen in the optical as a pair of quasars with very
similar spectra, small velocity differences and separations 3.′′0 <∼ Δθ <∼ 15.′′0.
The most recent compilation contained 15 examples (Mortlock, Webster and
Francis 1999). The incidence of these quasar pairs in surveys is roughly 2
per 1000 LBQS quasars (see Hewett et al. 1998) and 1 per 14000 CLASS
radio sources (Koopmans et al. 2000a,b). The separations of these objects
correspond to either very massive galaxies or groups/clusters. Obvious lenses
on these scales, in the sense that we see the lens, are rare but have an incidence
consistent with theoretical expectations (see Fig. 50). If, however, even a small
fraction of the objects like Q2345–007 are actually gravitational lenses, then
dark lenses outnumber normal groups and clusters and dominate the halo
population on mass scales above M >∼ 1013M�.

If the criterion of possessing a visible lens is dropped, so as to allow for
dark lenses, proving objects are lenses becomes difficult. There are two un-
ambiguous tests – measuring a time delay between the images, which is very
difficult given the long time delays expected for lenses with such large sepa-
rations, or using deep imaging to show that the host galaxies of the quasars
show the characteristic arcs or Einstein rings of lensed hosts (Figs. 3 and 4).
The latter test is feasible with HST6 and will be trivial with JWST. Spectral
comparisons have been the main area of debate. In the optical, many of the
pairs have alarmingly similar spectra if they are actually binary quasars (e.g.
Q2345+007 or Q1634+267, see Small et al. 1997) – indeed, some of these dark
lens candidates have more similar spectra than genuinely lensed quasars (see
Mortlock, Webster and Francis 1999). The clearest examples of dark lens can-
didates that have to be binary quasars are the cases in which only one quasar
is radio loud. These objects, such as PKS1145–071 (Djorgovski et al. 1987)
or MGC2214+3550 (Muñoz et al. 1998), represent 4 of the 15 candidates.
Similarly, the dramatic difference in the flux ratio between optical and X-ray
wavelengths of Q2345+007 is the strongest direct argument for this object
being a binary quasar (Green et al. 2002).

Two statistical arguments provide the strongest evidence that these ob-
jects must be binary quasars independent of any weighting of spectral simi-
larities. The first argument, due to Kochanek, Falco and Muñoz 1999), is that
the existence of binary quasars like MGC2214+3550 in which only one of the
quasars is radio loud predicts the incidence of pairs in which both are radio
quiet. We can label the quasar pairs as either O2R2, where both quasars are
seen in the optical (O) and the radio (R), O2R, where only one quasar is seen
in the radio, or O2 where neither quasar is seen in the radio. Lenses must
be either O2R2 or O2 pairs. Surveys of quasars find that only PR � 10% of
quasars are radio sources with 3.6 cm fluxes above 1 mJy (e.g. Bischof and

6 We detected the host galaxies of the Q2345–007 quasars in the CASTLES H-band
image. Their morphology is probably inconsistent with the lens hypothesis, but
we viewed the data as too marginal to publish the result.
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Becker 1997). If all the quasar pairs were binary quasars and the probability
of being radio loud is independent of whether a quasar is in a binary, then
the relative number of O2, O2R and O2R2 binaries should be 1 to 2PR = 0.2
to P 2

R = 0.01. Given that we observed 4 O2R binaries we should observe
20 O2 binaries and 0.2 O2R2 binaries. This statistical pattern matches the
data, and Kochanek, Falco and Muñoz (1999) found that the most probable
solution was that all quasar pairs were binary quasars with an upper limit of
only 8% (68% confidence) on the fraction that could be dark lenses. With the
subsequent expansion of the quasar pair sample and the discovery of the first
O2R2 binary (B0827+525, Koopmans et al. 2000a,b), these limits could be
improved.

The second statistical argument is that the dark lens candidates do not
have the statistical properties expected for lenses. Three aspects of the quasar
pairs make them unlikely to be lenses simply given the properties of gravita-
tional lensing. First, there are no four-image dark lens candidates even though
a third of the normal lenses are quads. Second, many of the dark lens can-
didates have very high flux ratios between the images – 4 of the 9 ambigu-
ous quasar pairs considered by Rusin (2002) have flux ratios of greater than
10:1. Magnification bias makes such large flux ratios very improbable for true
gravitational lenses (Sect. 6.6, Kochanek 1995a,b). Third, the suppression of
central/third/odd images in the lens population is a consequence of baryonic
cooling and the resulting increase of the central surface density. Standard dark
matter halos with their shallow central cusps, ρ ∝ r−1, generally produce de-
tectable third images. Since it is probably a requirement for a lens to remain
dark that the baryons in the halo cannot cool (or they would form stars), you
would expect the typical dark lens to resemble APM08279+5255 and have an
easily detectable third image (Rusin 2002). Thus, in the context of CDM we
would expect dark lenses to be standard cuspy density distributions like the
NFW model (60). Rusin (2002) evaluated the likelihood of the quasar pairs
assuming that dark lenses have the structure of CDM halos and found that the
observed flux ratios and the lack of three-image dark lenses were extremely
unlikely. Only the real lens APM08279+5255 had a significant probability of
being produced by a dark CDM halo (also see Muñoz, Kochanek and Keeton
2001), although for this case I think the exposed cusp/disk lens explanation
for the morphology is more likely.

The evidence overwhelmingly favors interpreting the quasar pairs as bi-
nary quasars. However, as originally pointed out by Djorgovski (1991), the
one problem with the binary hypothesis is that the incidence of the quasar
pairs is two orders of magnitude above that expected from an extrapolation
of the quasar-quasar correlation function on scales of Mpc. As discussed in
Kochanek, Falco and Muñoz 1999 and Mortlock, Webster and Francis (1999)
the incidence can be increased if the incipient merger of the two host galax-
ies is triggering the quasar activity. The separation distribution of the binary
quasars is crudely compatible with tidally triggered activity when the merger
starts followed by a coalescence of the host galaxies driven by tidal friction.
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Small separation binary quasars (Δθ < 3.′′0) are rare because the decay of the
host galaxy orbits accelerates as their separation diminishes. Well-measured
angular distributions of binary quasars, potentially obtainable from SDSS,
might allow detailed explorations of the triggering and merging physics.

8 The Role of Substructure

Simulations of CDM halos predicted many more small satellites than were
actually observed in the Milky Way (e.g. Kauffmann et al. 1993; Moore et
al. 1999; Klypin et al. 1999). Crudely 5–10% of the mass was left in satellites
with perhaps 1–2% at the projected separations of 1–2Re where we see most
lensed images (e.g. Zentner and Bullock 2003; Mao et al. 2004). This is far
larger than the observed fraction of 0.01–0.1% in observed satellites (e.g. Chiba
2002). Solutions were proposed in three broad classes: hide the satellites by
preventing star formation so they are present but dark (e.g. Klypin et al. 1999;
Bullock et al. 2000), destroy them using self-interacting dark matter (e.g.
Spergel and Steinhardt 2000), or avoid forming them by changing the power
spectrum to something similar to warm dark matter with significantly less
power on the relevant mass scales (e.g. Bode et al. 2001). These hypotheses
left the major observational challenge of distinguishing dark satellites from
non-existent ones. This became known as the CDM substructure problem.

It was well known in the lensing community that the fluxes of lensed images
were usually poorly fit by lens models. There was a long litany of reasons for
ignoring them arising from possible systematic errors which can corrupt image
fluxes. Differential effects between the images from the interstellar medium of
the lens can corrupt the fluxes (dust in the optical/IR, scatter broadening
in the radio, see Sect. 9.1). Time delays combined with source variability can
corrupt any single-epoch measurement. Microlensing by the stars in the lens
galaxy can modify the fluxes of any sufficiently compact component of the
source (at a minimum the quasar accretion disk, see Part 4). The most pe-
culiar problem was the anomalous flux ratios in radio lenses. Radio sources
are essentially unaffected by the ISM of the lens galaxy in low resolution ob-
servations that minimize the effects of scatter broadening (VLA rather than
VLBI), true absorption appears to be rare, radio sources generally show little
variability even when monitored, and most of the flux should come from re-
gions too large to be affected by microlensing. Yet in B1422+231, for example,
the three cusp images violated the cusp relation for their fluxes (that the sum
of the signed magnifications of the three images should be zero, see Metcalf
and Zhao 2002; Keeton, Gaudi and Petters 2003; or Schneider, Ehlers and
Falco 1992).7

7 In specific models there can also be global invariants relating image positions
and magnifications (e.g. Witt and Mao 2000; Hunter and Evans 2001; Evans and
Hunter 2002). These results are usually for simple softened power law models
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Fig. 54. The most spectacular example of an anomalous flux ratio, SDSS0924+0219
(Inada et al. 2003). In this CASTLES infrared HST image, the D image should be
comparable in brightness to the A image, but is actually an order of magnitude
dimmer. The A and B images are minima, while C and D are saddle points. The
contours are spaced by factors of two from the peak of the A image. The lens galaxy is
seen at the center. At present we do not know whether the suppression of the saddle
point in this lens is due to microlensing or substructure. If it is microlensing, ongoing
monitoring programs should see it return to its expected flux within approximately
10 years

It is easier to outline the problem of anomalous flux ratios near a fold
caustic (such as images A and D in SDSS0924+0219, see Fig. 54), than a cusp
caustic. Near a fold, the lens equations can be reduced to a one-dimensional
model with

β = θ (1 − Ψ ′′) − 1
2
Ψ ′′′θ2 → −1

2
Ψ ′′′θ2 (122)

and inverse magnification

μ−1 = (1 − Ψ ′′) − Ψ ′′′θ → −Ψ ′′′θ, (123)

where we choose our coordinates such that there is a critical line at θ = 0 (i.e.
1 − Ψ ′′ = 0) and the primes denote derivatives of the potential. These equa-
tions are easily solved to find that you have images at θ± = ±(−2β/Ψ ′′′)1/2

if the argument of the square root is positive and no solutions otherwise – as
you cross the fold caustic (β = 0) two images are created or destroyed on the
critical line at θ = 0. Their inverse magnifications of μ−1

± = ∓(−2βΨ ′′′)1/2

using either ellipsoidal potentials or an external shear rather than ellipsoidal
cuspy density distributions with an external shear, so their applicability to the
observed lenses is unclear.
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are equal in magnitude but reversed in sign. Hence, if the assumptions of the
Taylor expansion hold, the images merging at a fold should have identical
fluxes. Either by guessing or by tedious algebra you can determine that the
fractional correction to the magnification from the next order term is of or-
der θ±Ψ

(4)/Ψ ′′′. For any reasonable central potential where the images are
at radius θ0 from the lens center, the fractional correction will be of order
θ±/θ0 ∼ 0.1 for the typical pair of anomalous images. Hence, using gravity to
produce the anomalous flux ratios requires terms in the potential with a length
scale comparable to the separation of the images to significantly violate the
rule that they should have similar fluxes. Mao and Schneider (1998) pointed
out that a very simple way of achieving this was to put a satellite near the
images, and they found that this could explain the anomaly in B1422+231.
Metcalf and Madau (2001, also see Bradac et al. 2002 for images of the mag-
nification patterns expected from a CDM halo) put these two pieces together,
pointing out that if normal satellite galaxies were too rare to make anomalous
flux ratios common, the missing CDM substructure was not. They predicted
that in CDM, anomalous flux ratios should be common.

If we add a population of satellites with surface density κsat = Σsat/Σ near
the images we can estimate the nature of the perturbations. If we model them
as pseudo-Jaffe potentials with critical radius b and break radius8 a = (bb0)1/2,
then the satellites produce a deflection perturbation of order

〈δθ2〉1/2 ∼ 10−3b0

(
10Σsat

Σc

)1/2(103b

b0

)3/4

. (124)

Only massive satellites will be able to produce deflection perturbations large
enough to be detected given typical astrometric errors. Because the astromet-
ric constraints for lenses are so accurate, generally better than 0.′′005, satellites
with deflection scales larger than b >∼ 10−2b0 will usually have observable ef-
fects on model fits and must be included in the basic lens model. The shear
perturbation

〈δγ2〉1/2 ∼ 0.1
(

10Σsat

Σc

)1/2(103b

b0

)1/4( lnΛ
10

)1/2

, (125)

where lnΛ = ln(a/s) is a Coulomb logarithm required to make the integral
converge at small separations, is significantly larger. The effects of substruc-
ture gain on those from the primary lens as we move to quantities requiring
more derivatives of the potential because the substructure has less mass but
shorter length scales. For example most astronomical objects have masses
and sizes that scale with internal velocity σv as M ∝ σ4

v and R ∝ σ2
v . So

time delays, which depend on the potential φ ∝ M ∝ σ4
v , will be completely

unaffected by substructure. Deflections, which require one spatial derivative
8 This is the tidal truncation radius for an SIS of critical radius b orbiting in an

SIS of critical radius b0 > b. The total satellite mass is 	 πabΣc.
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of the potential, α ∝ φ/R ∝ σ2
v , are affected only be the more massive sub-

structures. Magnifications, which require two spatial derivatives of the poten-
tial, κ ∼ γ ∼ φ/R2 ∝ σ0

v , are affected equally by all mass scales provided
the Einstein radius of the object is larger than the characteristic size of the
source. Substructure will also affect brighter images more than fainter im-
ages because the magnifications of the brighter images are more unstable to
small perturbations. Recall that the magnification μ = (λ+λ−)−1 where one
of the eigenvalues λ± = 1 − κ ± γ, usually λ−, is small for a highly magni-
fied image. If we now add a shear perturbation δγ, the perturbation to the
magnification is of order δγ/λ− so you have a bigger fractional perturbation
to the magnification for the same shear perturbation if the image is more
highly magnified. The last important effect from substructure, for which I
know of no simple, qualitative explanation, is that substructure discriminates
between saddle points and minima when it is a small fraction of the total sur-
face density (Schechter and Wambsganss 2002; Keeton 2003b). In this regime,
the magnification distributions for the saddle points develop an extended tail
toward demagnification that is not present for the minima.

It turns out that anomalous flux ratios are very common – a fact which had
been staring us in the face but was ignored because most people (including the
author !) were mainly just annoyed that the flux ratios could not be used to
constrain the potential of the primary lens so as to determine the radial mass
profile. When Dalal and Kochanek (2002) collected the available four-image
radio lenses to estimate the abundance of substructure, they found that 5 of 6
systems showed anomalies. In order to estimate the abundance of substructure
Dalal and Kochanek 2002 developed a Bayesian Monte Carlo method which
estimated the likelihood that adding substructure would significantly improve
models of seven four-image lenses including the fact that the model for the
primary lens would have to be adjusted each time any substructure was added.
Figure 55 illustrates some tests of the method. Under the assumption that
the uncertainties in flux measurements (systematic as well as statistical) were
10%, they found a substructure mass fraction of 0.006 < fsat < 0.07 (90%
confidence) with a median estimate of fsat = 0.02. This is consistent with
expectations from CDM simulations, including estimates of the destruction of
the satellites in the inner regions of galaxies (Zentner and Bullock 2003; Mao
et al. 2004), and too high to be explained by normal satellite populations.
Because the result is driven by the flux anomalies, which do not depend on
the mass of the substructures, rather than astrometric anomalies, which do
depend on the mass, the results had almost no ability to estimate the mass
scale associated with the substructure.

While substructure with approximately the surface density expected from
CDM is consistent with the data, it is worth examining other possibilities.
We would expect any effect from the ISM to be strongly frequency dependent
(whether in the radio or in the optical). At least for radio lenses, Kochanek
and Dalal (2004) found that the optical depth function needed to explain the
radio flux anomalies would have to be gray, ruling out all the standard radio
suspects. We would also expect propagation effects at radio frequencies to
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Fig. 55. (Top) A Monte Carlo test for estimating substructure surface densities. The
heavy curves show the estimated probability distribution for the substructure surface
density fraction in a sample of 7 four-image lenses in which the input fraction was
5% (marked by the vertical line). The points on the curve show the median, 1σ and
2σ confidence limits. The output distributions are consistent with the true input
fraction. The dashed line shows how the accuracy would improve given a sample
of 56 lenses (i.e. multiplying the 8 trials of 7 images each). (Bottom) The same
method applied to the real data. The three distributions show the effects of changing
assumptions on the actual flux measurement errors – the greater the measurement
uncertainties the less substructure surface density is required to explain the flux
ratio anomalies. The middle case (10%) is probably slightly too conservative (20%
is ridiculously conservative and 5% is probably too optimistic)
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preferentially affect the faintest images because they have the smallest angu-
lar sizes – remember that more magnified images are always bigger even if
you cannot resolve the change in size. The ISM also cannot discriminate be-
tween images based on parity – the ISM is a local property of the lens and the
parity is not, so they cannot show a correlation. Hence, if radio propagation
effects created the anomalies they should be the same for minima and saddle
points and more important for the fainter than the brighter images. Figure 56
shows the cumulative distributions of flux residuals for radio, optical and com-
bined four-image lens samples from Kochanek and Dalal (2004). The bright
saddle point images clearly have a different distribution in each case, as we
would expect for substructure but not for the ISM. The Kolmogorov–Smirnov
test significance of the differences between the most magnified saddle points
and the other three types of images (brightest minimum, faintest minimum,
faintest saddle) is 0.04%, 5% and 0.3% for the radio, optical and joint sam-
ples respectively. The next most discrepant image is the brightest minimum,
also as expected for substructure, but with less significance. Various statisti-
cal games (bootstrap resampling methods of estimating significance or testing
for anomalies) always give the same results. Thus, the ISM is ruled out as an
explanation.

Even though simple Taylor series arguments make it unlikely that changes
to the central potential are a solution (see Sect. 4.4), it still has its advocates
(Evans and Witt 2003; Quadri et al. 2003; Möller, Hewett and Blain 2003;
Kawano et al. 2004). The basic answer is that it is possible to create flux
anomalies by making the deviations of the central potential from ellipsoidal
sufficiently large for the angular structure of the potential to change rapidly
enough between nearby images to produce the necessary magnification changes.
There are three basic problems with this solution (see Sect. 4.6 as well).

The first problem is that the required deviations from an ellipsoidal profile
are far too large. This is true even though the biggest survey of such mod-
els allowed image positions to shift by approximately 10 times their actual
uncertainties in order to alter the image fluxes (Evans and Witt 2003) – had
they forced the models to match the true astrometric uncertainties they would
have needed even larger perturbations. Kochanek and Dalal (2004) found that
models fitting the flux anomalies required |a4| � 0.01 compared to the typical
values observed for galaxies and simulated halos (|a4| ∼ 0.01, see Sect. 4.4). It
is fair to say, however, that the quantitative results on the multipole structure
of simulated halos are limited.

The second problem is that when we test these solutions in lenses for which
we have additional model constraints, the models are forced back toward the
standard ellipsoidal models. The basic problem, as Evans and Witt (2003)
show, is that the problem of fitting image positions and fluxes with potentials
of the form rF (θ) can be reduced to a problem in linear algebra if F (θ) is ex-
panded as a multipole series – by adding enough terms it is possible to fit any
four-image lens exactly. The reasons go back to the lack of constraints we dis-
cussed in Sect. 4.6. Figure 26 illustrates this point using the lens B1933+503.



Part 2: Strong Gravitational Lensing 227

Kochanek and Dalal (2004) first fit the four compact images with a model in-
cluding deviations from an ellipsoidal surface density. With sufficiently strong
deviations there were models that could eliminate the flux anomalies in this
system. However, this lens, B1933+503, actually has three components to its
source – a compact core forming the four-image system with the anomaly but
also to radio lobes lensed into another four-image system and a two-image
system for 10 images in all (Fig. 6). When we add the constraints from these
other images the model is forced back to being a standard ellipsoidal model
with a flux ratio anomaly. In the future, the degree to which lens galaxy po-
tentials are ellipsoidal could be thoroughly tested in the lenses with Einstein
ring images of their host galaxies.

The third problem with using the central potential to produce flux ratio
anomalies is that it does not lead to the discrimination between saddle points
and minima shown in Fig. 56. Kochanek and Dalal (2004) demonstrate this
with Monte Carlo simulations, but the basic reason is simple. Consider a
lens like PG1115+080 with two images merging at a saddle point. The sense
with which the saddle point and minima are perturbed depends on the phase
of the higher order multipoles relative to the images and the critical line,
but for any fixed lens potential, that phase varies depending on the source
position, so the average effect cannot make the bright saddle points show a
significantly different set of properties from the bright minima. Every observed
flux anomaly could be explained by adding complex angular structures to the
main lens, but the inability of these models to differentiate between saddle
points and minima would still rule them out.

For the moment there are two barriers to improving estimates of the sub-
structure mass fraction. First, radio lens surveys have run out of sources bright
enough to conduct efficient surveys. This will only change as upgrades to ex-
isting radio arrays are completed. The proposed Merlin and VLA upgrades
will provide both sensitivity and resolution improvements that will make the
next generation of radio lens surveys easier than the last. Second, searches for
substructure using optical quasars need to separate the effects of microlensing
and substructure. With simple imaging this can be done by finding parts of
the quasar which are sufficiently extended to avoid significant contamination
from microlensing. Emission line (e.g. Moustakas and Metcalf 2003) and dust
emission regions should both be large enough to filter out the effects of the
stars. Studying emission line ratios is now relatively easy because of the new
generation of small-pixel integral field spectrographs on 8m-class telescopes.
Mid-infrared flux ratios for the dusty regions remain difficult, but they have
been obtained for one lens (Q2237+0305, Agol et al. 2000) and could be ex-
tended to several more.

The gold standard, however, would be astrometric detection of dark sub-
structure so that we would obtain a direct, mass estimate. In all the present
analyses, the most massive substructures were included as part of the model.
They were not, however, dark substructures because they matched to satel-
lites visible in HST images of the lenses. For example, Object X in MG0414
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Fig. 56. Saddle point suppression in lenses. The three panels show the cumulative
distributions of model flux residuals, log(fobs/fmod), in the real data, assuming con-
stant fractional flux errors for each image. The solid (dashed) lines are for minima
(saddle points), with squares (no squares) for the distribution corresponding to the
most (least) magnified image. From top to bottom the distributions are shown for
samples of 8 radio, 10 optical or 15 total four-image lenses. If the flux residuals
are created by propagation effects we would not expect the distributions to depend
on the image parity or magnification, while if they are due to low optical depth
substructure we would expect the distribution for the brightest saddle points to be
shifted to lower observed fluxes

+0534 (Fig. 7) has effects on the image positions that are virtually impos-
sible to reproduce with changes in the potential of the central lens galaxy
(Trotter, Winn and Hewitt 2000), while models with it easily fit the data
(Ros et al. 2000). Figure 57 shows the dependence of the goodness of fit to
MG0414+0534 on the location of an additional lens component, with a deep
minimum located at the observed position of Object X. The deflections pro-
duced by an object of mass M generally scale as M1/2, so it is relatively easy
to detect the deflection perturbations from objects only 1% the mass of the
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Fig. 57. The improvement in the fit to the Ros et al. (2000) VLBI data on
MG0414+0534 from adding an additional lens with an Einstein radius 15% that
of the primary lens galaxy as a function of its position. The squares show the lo-
cation of the quasar images, the central circles mark the position of the main lens
galaxy and the single circle marks the position of object X (see Fig. 7). The heavy
contour has the same χ2 = 123 as single component models, and they then drop a
factor of 0.2 per lighter contour to a minimum of χ2 = 0.6 almost exactly at the
position of Object X

primary lens. One approach is to search lenses with VLBI structures for signs
of perturbations. This has been attempted for B1152+199 by Metcalf (2002),
but the case for substructure is not very solid given the limited nature of
the data. The cleanest example of astrometric detection of something small,
but sadly not dark, is in the VLBI structure of image C in MG2016+112
(Koopmans et al. 2002). The asymmetry in the VLBI component separations
of image C on either side of the critical line (see Fig. 58) is due to a very faint
galaxy 0.′′8 South of the image with a deflection scale ∼ 10% of the primary
lens (see Fig. 7). This is in reasonable agreement with the prediction from
the H-band magnitude difference of 4.6 mag and the (lens) Faber–Jackson
relation between magnitudes and deflections. In this case, we even know that
the satellite is at the same redshift as the lens because Koopmans and Treu
(2002) accidentally measured its redshift in the course of their observations
to measure the velocity dispersion of the lens galaxy.
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Fig. 58. VLBI maps of MG2016+112 (Koopmans et al. 2002). The large difference
in the C11/C12 separation as compared to the C13/C2 separation is the clearest
example of an “astrometric” anomaly in a lens. The critical line passes between C12

and C13 and by symmetry we would expect the separations of the subcomponents on
either side of the critical line to be similar. In this case the cause of the asymmetry
seems to be a galaxy D about 0.′′8 South of the C image (see Fig. 7). Galaxy D has
the same redshift as the primary lens (Koopmans and Treu 2002)‘

8.1 Low Mass Dark Halos

When we are examining a particular lens, almost all the substructure will con-
sist of satellites associated with the lens with only ∼ 10% contamination from
other small halos along the line-of-sight to the source (Chen, Kravtsov and
Keeton 2003). However, the excess of low mass halos in CDM mass functions
relative to visible galaxies is a much more general problem because the low
mass CDM satellites should exist everywhere, not just as satellites of mas-
sive galaxies (Fig. 49, Gonzalez et al. 2000; Kochanek 2003a,b,c). Crudely,
luminosity functions diverge as dn/dL ∼ 1/L ∼ 1/M while CDM mass func-
tions diverge as dn/dM ∼ M−1.8 so the fraction of low mass halos that must
be dark increases ∼ M−0.8 at low masses. Figure 49 illustrates this assuming
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that all low mass halos have baryons which have cooled (e.g. Gonzalez et al.
2000; Kochanek 2003a,b,c). In the context of CDM, the solution to this general
problem is presumably the same as for the satellites responsible for anomalous
flux ratio – they exist but lost their baryons before they could form stars. Such
processes are implicit in semianalytic models which can reproduce galaxy lu-
minosity function (e.g. Benson et al. 2003) but can be modeled empirically in
much the same way was employed for the break between galaxies in clusters in
Sect. 7 (e.g. Kochanek 2003a,b,c). In any model, the probability of the baryons
cooling to form a galaxy has to drop rapidly for halo masses below ∼ 1011M�
just as it has to drop rapidly for halo masses above ∼ 1013M�. Unlike groups
and clusters, where we still expect to be able to detect the halos from either
their member galaxies or X-ray emission from the hot baryons trapped in the
halo, these low mass halos almost certainly cannot be detected in emission.

Unlike substructures in the halo of a massive galaxy that can be detected
from their influence on the fluxes of lensed images, we can only detect isolated,
low-mass dark halos if they multiply image background sources. For SIS lenses
the distribution of image separations for small separations (Δθ/Δθ∗ � 1,
(111)) scales as

dτSIS

dΔθ
∝ Δθ1+γF J (1+α)/2, (126)

where α describes the divergence of the mass/luminosity function at low mass
and γFJ is the conversion from mass to velocity dispersion (see Sect. 6.2). For
the standard parameters of galaxies, α � −1 and γFJ � 4, the separation
distribution is dτSIS/dΔθ ∝ Δθ. In practice we do not observe this distri-
bution because the surveys have angular selection effects that prevent the
detection of small image separations (below 0.′′25 for the radio surveys), so
the observed distributions show a much sharper cutoff (Fig. 1). Even without
a cutoff, there would be few lenses to find – the CLASS survey found 9 lenses
between 0.′′3 ≤ Δθ ≤ 1.′′0 in which case we expect only one lens with Δθ < 0.′′3
even in the absence of any angular selection effects. A VLBI survey of 3% of
the CLASS sources with milli-arcsecond resolution found no lenses (Wilkinson
et al. 2001), nor would it be expected to for normal galaxy populations. Our
non-parametric reconstruction of the velocity function including selection ef-
fects confirms that the existing lens samples are consistent with this standard
model (Fig. 48).

The result is very different if we extrapolate to low mass with the α � −1.8
slope of the CDM halo mass function. The separation distribution becomes
integrably divergent, dτSIS/dΔθ ∝ Δθ−0.6, and we would expect 15 lenses
with Δθ < 0.′′3 given 9 between 0.′′3 ≤ Δθ ≤ 1.′′0. Unfortunately, the Wilkinson
et al. (2001) VLBI survey is too small to rule out such a model. A larger VLBI
survey could easily do so, allowing the lenses to confirm the galaxy counting
argument for the existence of second break in the density structure of halos at
low mass (Kochanek 2003a,b,c; Ma 2003) similar to the one between galaxies
and high mass halos (Sect. 7). If the baryons in the low mass halos either fail to
cool, or cool and are then ejected by feedback, then their density distributions
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should revert to those of their CDM halos. If they are standard NFW halos,
Ma (2003) shows that such low mass dark lenses will be very difficult to detect
even in far larger surveys than are presently possible. Nonetheless, improving
the scale of searches for very small separations from the initial attempt by
Wilkinson et al. (2001) would provide valuable limits on their existence.

The resulting small, dark lenses would be the same as the dark lenses we
discussed in Sect. 7.2 for binary quasars and explored by Rusin (2002). They
will also create the same problems about proving or disproving the lens hy-
pothesis as was raised by the binary quasars with the added difficulty that
they will be far more difficult to resolve. Time delays, while short enough to
be easily measured, will also be on time scales where quasars show little vari-
ability. Confirmation of any small dark lens will probably require systems with
three or four images, rather than two images, and the presence of resolvable
(VLBI) structures.

9 The Optical Properties of Lens Galaxies

The optical properties of lens galaxies and the properties of their interstellar
medium (ISM) are important for two reasons. First, statistical calculations
such as those in Sect. 6 rely on lens galaxies obeying the same scaling rela-
tions as nearby galaxies and the selection effects depend on the properties
of the ISM. Thus, measuring the scaling relations of the observed lenses and
the properties of their ISM are an important part of validating these calcu-
lations. Second, lenses have a unique advantage for studying the evolution of
galaxies because they are the only sample of galaxies selected based on mass
rather than luminosity, surface brightness or color. Evolution studies using
optically-selected samples will always be subject to strong biases arising from
the difficulty of matching nearby galaxies to distant galaxies. Selection by
mass rather than light makes the lens samples almost immune to these biases.

Most lens galaxies are early-type galaxies with relatively red colors and few
signs of significant on-going star formation (like the 3727Å or 5007Å Oxygen
lines). The resulting need to measure absorption line redshifts is one of the
reasons that the completeness of the lens redshift measurements is so poor.
Locally, early-type galaxies follow a series of correlations which also exist for
the lens galaxies and have been explored by Im, Griffiths and Ratnatunga
(1997); Keeton, Kochanek and Falco (1998); Kochanek et al. (2000a,b); Rusin
et al. (2003a); Rusin, Kochanek and Keeton (2003b); van de Ven, van Dokkum
and Franx (2003); Rusin and Kochanek (2005).

The first, crude correlation is the Faber–Jackson relation between ve-
locity dispersion and luminosity used in most lens statistical calculations.
A typical local relation is that from Sect. 6.2 and shown in Fig. 39. Most
lenses lack directly measured velocity dispersions, but all lenses have a well-
determined image separation Δθ. For specific mass models the image separa-
tion can be converted into an estimate of a velocity dispersion, such as the
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Δθ = 8π(σv/c)2Dds/Ds relation of the SIS, but the precise relationship de-
pends on the mass distribution, the orbital isotropy, the ellipticity and so forth
(see Sect. 4.9). For the lenses, there is a close relationship between the Faber–
Jackson relation and aperture mass-to-light ratios. The image separation, Δθ,
defines the aperture mass interior to the Einstein ring,

Map =
π

4
ΣcΔθ

2, (127)

where Σc = c2Ds/4πGDdsDd is the critical surface density. By image separa-
tion we usually mean either twice the mean distance of the images from the
lens galaxy or twice the critical radius of a simple lens model rather than a
directly measured image separation because these quantities will be less sensi-
tive to the effects of shear and ellipticity. If we measure the luminosity in the
aperture Lap using (usually) HST, then we know the aperture mass-to-light
(M/L) ratio Υap = Map/Lap.

If the mass-to-light ratio varies with radius or with mass, then to compare
values of Υap from different lenses we must correct them to a common radius
and common mass. If these scalings can be treated as power laws, then we
can define a corrected aperture mass-to-light ratio Υ∗ = Υap(D

ang
d Δθ/2R0)x

where R0 is a fiducial radius and x is an unknown exponent, and we would
expect to find a correlation of the form

log Υ∗ = 2(1 + a) logΔθ + 0.4Mabs + constant, (128)

where Mabs is the absolute magnitude of the lens (in some band) and a value
a 
= 0 indicates that the mass-to-light ratio varies either with mass or with
radius. We can then rewrite this in a more familiar form as

Mabs = Mabs,0 + γEV zl − 1.25γFJ log
(
Δθ

Δθ0

)
, (129)

where Δθ0 sets an arbitrary separation scale, γEV (or a more complicated
function) determines the evolution of the luminosity with redshift, and γFJ =
4(1 + a) sets the scaling of luminosity with normalized separation defined so
that for an SIS lens (where Δθ ∝ σ2

v) the exponent γFJ will match the index
of the Faber–Jackson relation (102). Figure 59 shows the resulting relation
converted to the rest frame B band at redshift zero. The relation is slightly
tighter than local estimates of the Faber–Jackson relation, but the scatter is
still twice that expected from the measurement errors. The best fit exponent
γFJ = 3.29 ± 0.58 (Fig. 59) is consistent with local estimates and implies a
scaling exponent a = −0.18 ± 0.14 that is marginally non-zero. If the mass-
to-light ratio of early-type galaxies increases with mass as Υ ∝ Mx, then
x = −a = 0.18 ± 0.14 is consistent with estimates from the fundamental
plane that more massive early-type galaxies have higher mass-to-light ratios.
The solutions also require evolution with γEV = −0.41 ± 0.21, so that early-
type galaxies were brighter in the past. These scalings can also be done in
terms of observed magnitudes rather than rest frame magnitudes to provide
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Fig. 59. (Top) The “Faber–Jackson” relation for gravitational lenses. The figure
compares the observed absolute B magnitude corrected for evolution to that pre-
dicted from the equivalent of the Faber–Jackson relation for gravitational lenses
(129). The different point styles indicate whether the lens and source redshifts were
directly measured or estimated. From Rusin et al. (2003a,b). (Bottom) The red-
shift zero absolute B-band magnitude and effective exponent of the “Faber–Jackson”
relation L ∝ ΔθγF J /2 for gravitational lenses
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simple estimation formulas for the apparent magnitudes of lens galaxies in
various bands as a function of redshift and separation to an rms accuracy of
approximately 0.5 mag (see Rusin et al. 2003a,b).

The significant scatter of the Faber–Jackson relation makes it a crude tool.
Early-type galaxies also follow a far tighter correlation known as the funda-
mental plane (FP, Dressler et al. 1987; Djorgovski and Davis 1987) between
the central, stellar velocity dispersion σc, the effective radius Re and the mean
surface brightness inside the effective radius 〈SBe〉 of the form

log
(

Re

h−1kpc

)
= α log

(
σc

km s−1

)
+ β

(
〈SBe〉

mag arcsec−2

)
+ γ, (130)

where the slope α and the zero-point γ depend on wavelength but the slope
β � 0.32 does not (e.g. Scodeggio et al. 1998; Pahre, de Carvalho and Djor-
govski 1998). Local estimates for the rest frame B-band give α = 1.25 and
γ0 = −8.895 − log(h/0.5) (e.g. Bender et al. 1998). In principle both the
zero points and the slopes may evolve with redshift, but all existing studies
have assumed fixed slopes and studied only the evolution of the zero point
with redshift. For galaxies with velocity dispersion measurements, the ba-
sis of the method is that measurement of Re and σv provides an estimate
of the surface brightness the galaxy will have at redshift zero. The differ-
ence between the measured surface brightness at the observed redshift and
the surface brightness predicted for z = 0 measures the evolution of the
stellar populations between the two epochs as a shift in the zero-point Δγ.
The change in the zero-point is related to the change in the luminosity by
ΔL = −0.4ΔSBe = Δγ/(2.5β). While these estimates are always referred
to as a change in the mass-to-light ratio, no real mass measurement enters
operationally. If, however, we assume a non-evolving virial mass estimate
M = cMσ2

vRe/G for some constant cM , then the FP can be rewritten in
terms of a mass-to-light ratio,

log Υ = log
(
M

L

)
∝
(

10β − 2α
5β

)
log σc +

(
2 − 5β

5β

)
logRe −

γ

2.5β
, (131)

so that if both α and β do not evolve, the evolution of the mass-to-light ratio
is d log Υ/dz = −(dγ/dz)/(2.5β). Either way of thinking about the FP, either
as an empirical estimator of the redshift zero surface brightness or an implicit
estimate of the virial mass, leads to the same evolution estimates but alternate
ways of thinking about potential systematic errors.

Confusion about applications of lenses to the FP and galaxy evolution usu-
ally arise because most gravitational lenses lack direct measurements of the
central velocity dispersion. Before addressing this problem, it is worth consid-
ering what is done for distant galaxies with direct measurements. The central
dispersion appearing in the FP has a specific definition – usually either the ve-
locity dispersion inside the equivalent of a 3.′′0 aperture in the Coma cluster or
the dispersion inside Re/8. Measurements for particular galaxies almost never
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exactly match these definitions, so empirical corrections are applied to adjust
the velocity measurements in the observed aperture to the standard aperture.
As we explore more distant galaxies, resolution problems mean that the mea-
surement apertures become steadily larger than the standard apertures. The
corrections are made with a single, average local relation for all galaxies –
implicit in this assumption is that the dynamical structure of the galaxies
is homogeneous and non-evolving. This seems reasonable since the minimal
scatter around the FP seems to require homogeneity, but says nothing about
evolution. These are also the same assumptions used in the lensing analyses.

If early-type galaxies are homogeneous and have mass distributions that
are homologous with the luminosity distributions, then there is no difference
between the lens FP and the normal kinematic FP, independent of the actual
mass distribution of the galaxies (Rusin and Kochanek 2005). If the mass dis-
tributions are homologous, then the mass and velocity dispersion are related
by M = cMσ2

cRe/G where cM is a constant, σc is the central velocity disper-
sion (measured in a self-similar aperture like the Re/8 aperture used in many
local FP studies), and Re is the effective radius. If we allow the mass-to-light
ratio to scale with luminosity as Υ ∝ Lx, then the normal FP can be written as

logRe =
2

2x+ 1
log σc +

0.4(x+ 1)
2x+ 1

〈SBe〉 +
log cM
2x+ 1

, (132)

which looks like the local FP (130) if α = 2/(2x+1) and β = 0.4(x+1)/(2x+1)
(see Faber et al. 1987). Thus, the lens galaxy FP will be indistinguishable from
the FP provided early-type galaxies are homologous and the slopes can be re-
produced by a scaling of the mass-to-light ratio (as they can for x � 0.3 given
α � 1.2 and β � 0.3, e.g., Jorgensen, Franx and Kjaergaard 1996 or Bender
et al. 1998). All the details about the mass distribution, orbital isotropies
and the radius interior to which the velocity dispersion is measured enter only
through the constant cM or equivalently from differences between the FP zero
point γ measured locally and with gravitational lenses. In practice, Rusin and
Kochanek (2005) show that the zero point must be measured to an accuracy
significantly better than Δγ = 0.1 before there is any sensitivity to the ac-
tual mass distribution of the lenses from the FP. Thus, there is no difference
between the aperture mass estimates for the FP and its evolution and the
normal stellar dynamical approach unless the major assumption underlying
both approaches is violated. It also means, perhaps surprisingly, that measur-
ing central velocity dispersions adds almost no new information once these
conditions are satisfied.

Rusin and Kochanek (2005) used the self-similar models we described in
Sect. 4.8 to estimate the evolution rate and the star formation epoch of the
lens galaxies while simultaneously estimating the mass distribution. Thus, the
models for the mass include the uncertainties in the evolution and the reverse.
Figure 60 shows (top) the estimated evolution rate, and shows (bottom) how
this is related to a limit on the average star formation epoch 〈zf 〉 based on
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Fig. 60. (Top) Constraints on the B-band luminosity evolution rate
d log(M/L)B/dz as a function of the logarithmic density slope n (ρ ∝ r−n) of the
galaxy mass distribution. Solid (dashed) contours are the 68% and 95% confidence
limits on two parameter (one parameter). These use the self-similar mass models of
(89) and are closely related to the fundamental plane. From Rusin and Kochanek
(2005). (Bottom) Constraints on the mean star formation epoch 〈zf 〉 as a function
of the logarithmic density slope n (ρ ∝ r−n) of the galaxy mass distribution. Solid
(dashed) contours are the 68% and 95% confidence limits on two parameter (one
parameter). The horizontal dotted lines mark 〈zf 〉 = 1.3, 1.4, 1.5, 1.6 and 1.7. The
lens sample favors older stellar populations with 〈zf 〉 > 1.5 at 95% confidence. These
use the self-similar mass models of (89) and are closely related to the fundamental
plane. From Rusin and Kochanek (2005)
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Bruzual and Charlot (1993, BC96 version) population synthesis models. This
estimate is consistent with the earlier estimates by Kochanek et al. (2000a,b)
and Rusin et al. (2003a,b) which used only isothermal lens models, as we would
expect. van de Ven, van Dokkum and Franx (2003) found a somewhat lower
star formation epoch (〈zf 〉 = 1.8+1.4

−0.5) when analyzing the same data, which
can be traced to differences in the analysis. First, by weighting the galaxies by
their measurement errors when the scatter is dominated by systematics and
by dropping two higher redshift lens galaxies with unknown source redshifts,
van de Ven et al. (2003) analysis reduces the weight of the higher redshift
lens galaxies, which softens the limits on low 〈zf 〉. Second, they used a power
law approximation to the stellar evolution tracks which underestimates the
evolution rate as you approach the star formation epoch, thereby allowing
lower star formation epochs. These two effects leverage a small difference in
the evolution rate9 into a much more dramatic difference in the estimated
star formation epoch. These evolution rates are consistent with estimates for
cluster or field ellipticals by (e.g. van Dokkum and Franx 1996; van Dokkum
et al. 2001; van Dokkum and Franx 2001; van Dokkum and Ellis 2003; Kelson
et al. 1997; Kelson et al. 2000), and inconsistent with the much faster evolution
rates found by Treu et al. (2001, 2002) or Gebhardt et al. (2003).

9.1 The Interstellar Medium of Lens Galaxies

As well as studying the emission by the lens galaxy we can study its ab-
sorption of emission from the quasar as a probe of the interstellar medium
(ISM) of the lens galaxies. The most extensively studied effect of the ISM is
dust extinction because of its effects on estimating the cosmological model
from optically-selected lenses and because it allows unique measurements of
extinction curves outside the local Group. There are also broad band effects
on the radio continuum due to free-free absorption, scatter broadening and
Faraday rotation. While all three effects have been observed, they have been
of little practical importance so far. Finally, in both the radio and the optical,
the lens can introduce narrow absorption features. While these are observed
in some lenses, observational limitations have prevented them from being as
useful as the are in other areas of astrophysics.

As we mentioned in Sect. 6, extinction is an important systematic problem
for estimating the cosmological model using the statistics of optically selected
lenses. It modifies the results by changing the effective magnification bias
of the sample because it provides an effect to make lensed quasars dimmer
than their unlensed counterparts. Because we see multiple images of the same
quasar, it is relatively easy to estimate the differential extinction between
9 Rusin and Kochanek (2005) obtained d log(M/L)B/dz = −0.50 ± 0.19 including

the uncertainties in the mass distribution, Rusin et al. (2003a,b) obtained −0.54±
0.09 for a fixed SIS model, and van de Ven et al. (2003) obtained −0.62 ± 0.13
for a fixed SIS model.
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lensed images under the assumption that the quasar spectral shapes are not
varying on the time scale corresponding to the time delay between the images
and that microlensing effects are not significantly changing the slope of the
quasar continuum. The former is almost certainly valid, while for the latter
we simply lack the necessary data to check the assumption (although we have
a warning sign from the systems where the continuum and emission line flux
ratios differ, see Part 4). Under these assumptions, the magnitude difference
at wavelength λ between two images A and B

mA(λ) −mB(λ) = −2.5 log
∣∣∣∣
μA

μB

∣∣∣∣+R

(
λ

1 + zl

)
ΔE(B − V ) (133)

depends on the ratio of the image magnifications μA/μB , the differential ex-
tinction ΔE(B − V ) = EA − EB between the two images and the extinction
law R(λ/(1 + zl)) of the dust in the rest frame of the dust. We have the addi-
tional assumption that either the extinction law is the same for both images or
that one image dominates the total extinction (Nadeau et al. 1991). Because
it is a purely differential measurement that does not depend on knowing the
intrinsic spectrum of the quasar, it provides a means of determining extinc-
tions and extinction laws that is otherwise only achievable locally where we
can obtain spectra of individual stars (the pair method, e.g. Cardelli, Clayton
and Mathis 1989). The total extinction cannot be determined to any compa-
rable accuracy because estimates of the total extinction require an estimate
of the intrinsic spectrum of the quasar. Figure 61 shows the distribution of
differential extinctions found in the Falco et al. (1999) survey of extinction in
23 gravitational lenses. Only 7 of the 23 systems had colors consistent with
no extinction, and after correcting for measurement errors and excluding the
two outlying, heavily extincted systems the data are consistent with a one-
sided Gaussian distribution of extinctions starting at 0 and with a dispersion
of σΔE � 0.1 mag. The two outlying systems, B0218+357 and PKS1830–211,
were both radio-selected and both have one image that lies behind a molecular
cloud of the late type lens galaxy (see below).

For lenses that have the right amount of dust, so that the image flux ratio
can be measured accurately over a broad range of wavelengths, it is possi-
ble to estimate the extinction curve R(λ/(1 + zl)) of the dust (Nadeau et
al. 1991) or to estimate the dust redshift under the assumption that the ex-
tinction curve is similar to those measured locally (Jean and Surdej 1998).
Starting with Nadeau et al. (1991), there have been many estimates of ex-
tinction curves in lens galaxies (Falco et al. 1999; Toft, Hjorth and Burud
2000; Motta et al. 2002; Muñoz et al. 2004). The most interesting of these
are for systems where the region near the 2175Å extinction feature is vis-
ible. This requires source and lens redshifts that put the feature at long
enough wavelengths to be easily observed (i.e. higher lens redshifts) with
a quasar UV continuum extending to shorter wavelengths (i.e. lower source
redshifts). Motta et al. (2002) achieved the first cosmological detection of
the feature in the zl = 0.83 lens SBS0909+532, as shown in Fig. 62. The
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Fig. 61. Histograms of the differential extinction in various lens subsamples from
Falco et al. (1999). In each panel the solid histogram shows the full sample of 37 dif-
ferential extinctions measured in 23 lenses while the shaded histogram shows the dis-
tributions for different selection methods (radio/optical) or galaxy types (early/late).
The hatched region shows the extinction range consistent with the Falco, Kochanek
and Muñoz 1998 analysis of the difference between the statistics of radio-selected and
optically-selected lens samples (see Sect. 6.6). Note that the most highly extincted
systems, PKS1830–211 and B0218+357, are both radio-selected and late-type galax-
ies. The lowest differential extinction bins are contaminated by the effects of finite
measurement errors

overall extinction curve is marginally consistent with a standard Galactic
RV = 3.1 extinction curve. Other cosmologically distant extinction curves are
very different from normal Galactic models ranging for an anomalously low
RV curve in MG0414+0534 at zl = 0.96 (Falco et al. 1999), probably an SMC
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Fig. 62. The extinction curve of the dust in SBS0909+532 at zl = 0.83 by Motta et
al. (2002). The solid squares show the magnitude difference as a function of inverse
rest wavelength derived from integral field spectra of the continuum of the quasars.
The open squares are broad band measurements from earlier HST imaging and the
filled triangles are the flux ratios in the quasar emission lines. The solid curve shows
the best fit RV = 2.1 ± 0.9 Cardelli, Clayton and Mathis (1989) extinction curve
while the dashed curve shows a standard RV = 3.1 curve. The offset between the
continuum and emission line flux ratios seems not to depend on wavelength and is
probably due to microlensing

extinction curve in LBQS1009–252 at an estimated redshift of zl � 0.88
(Muñoz et al. 2004), and a anomalously high RV extinction curve for the
dust in the molecular cloud of the zl = 0.68 lens galaxy in B0218+357. The
Jean and Surdej (1998) idea of using the shape of the extinction curve to esti-
mate the redshift of the dust also seems to work given a reasonable amount of
dust and wavelength coverage (see Falco et al. 1999; Muñoz et al. 2004), but
too few lenses with unknown redshifts satisfy the requirements for widespread
use of the method.

For broad band radio emission from the source, the three observed prop-
agation effects are free-free absorption, scatter broadening and Faraday ro-
tation. For example, in PMNJ1632–0033, the candidate third image of the
lens (C) has the same radio spectrum as the other two images except at the
lowest frequency observed (1.4 GHz) where it is fainter than expected. This
can be interpreted as free-free absorption by electrons at the center of the
lens galaxy but the interpretation needs to be confirmed by measurements
at additional frequencies to demonstrate that the dependence of the optical
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depth on wavelength is consistent with the free-free process (Winn, Rusin
and Kochanek 2004). Scatter broadening is observed in many radio lenses
(e.g. PMN0134–0931, Winn et al. 2003a,b,c; B0128+437, Biggs et al. 2004;
PKS1830–211, Jones et al. 1996; B1933+503, Marlow et al. 1999) primarily
as changes in the fluxes of images between high resolution VLBI observations
and lower resolution VLA observations or apparently finite sizes for compact
source components in VLBI observations. Aside from its effects in altering
radio fluxes determined in VLBI observations, it seems to have practical con-
sequences. In the presence of a magnetic field, the scattering medium will also
rotate polarization vectors (e.g. MG1131+0456, Chen and Hewitt 1993). This
is only of practical importance if maps which depend on the polarization vec-
tor are used to constrain the lens potential. In short, these effects are observed
but have so far been of little practical consequence.

More surprisingly, absorption by atoms and molecule has also been of little
practical import for lens physics as yet. Wiklind and Alloin (2002) provide an
extensive review of molecular absorption and emission in gravitational lenses.
The two systems with the strongest absorption systems are B0218+357 and
PKS1830–211 (see Gerin et al. 1997 and references therein) where one of the
two images lies behind a molecular cloud of the spiral galaxy lens. These
two systems also show the highest extinction of any lensed images (Falco
et al. 1999). Molecular absorption systems can be used to determine time
delays (Wiklind and Alloin 2002), measure the redshift of lens galaxies (the
lens redshift in PKS1830-211 is measured using molecular absorption lines,
Wiklind and Combes 1996), and potentially to determine the rotation velocity
of the lens galaxy (e.g. Koopmans and de Bruyn 2003). These studies at
centimeter and millimeter wavelengths are heavily limited by the resolution
and sensitivity of existing instruments, and the importance of these radio
absorption features will probably rise dramatically with the completion of the
next generation of telescopes (e.g. ALMA, LOFAR, SKA).

Similar problems face studies of metal absorption lines in the optical. Since
most lenses are at modest redshifts, the strongest absorption lines expected
from the lens galaxies tend to be observable only from space because they
lie at shorter wavelengths than the atmospheric cutoff. For most lenses only
the MgII (2800Å) lines are potentially observable from the ground since you
only require a lens redshift zl >∼ 0.26 to get the redshifted absorption lines
longwards of 3500Å. The other standard metal line, CIV (1549Å), is only
visible for zl >∼ 1.25, and we have no confirmed lens redshifts in this range.
Spectroscopy with HST can search for metal lines in the UV, but the inte-
gration times tend to be prohibitively long unless the quasar images are very
bright. Thus, while absorption lines either associated with the lens galaxy
or likely to be associated with the lens galaxy are occasionally found (e.g.
SDSS1650+4251, Morgan, Snyder and Reens 2003; or HE1104–1805, Lidman
et al. 2000), there have been no systematic studies of metal absorption in
gravitational lenses. Nonetheless, some very bright quasar lenses are favored
targets for very high dispersion studies of their Lyα forest, particularly the
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four-image lens B1422+231 and the three image lens APM08279+5255, be-
cause the lens magnification makes these systems anomalously bright for
quasars at zs > 3.

10 Extended Sources and Quasar Host Galaxies

As we saw in Figs. 3, 4, and 8, we frequently see lensed emission from ex-
tended components of the source. These arcs and rings are important because
they can supply the extra constraints needed to determine the radial mass
distribution that we lack in a simple two-image or four-image lens (Sect. 4.1).
The magnification produced by gravitational lensing also allows us to study
far fainter quasar host galaxies than is otherwise possible. Comparisons of
the luminosities and colors of high and low redshift host galaxies and the
relative luminosities of the host and the quasar are important for understand-
ing the growth of supermassive black holes and their relationships with their
parent halos.

Modeling extended emission is more difficult than modeling point sources
largely because of the complications introduced by the finite resolution of the
observations. In this section we first discuss a simple theory of Einstein ring
images, then some methods for modeling extended emission, and finally some
results about the mass distributions of lenses and the properties of quasar
host galaxies. All models of extended lenses sources start from the fact that
lensing preserves the surface brightness of the source – what we perceive as
magnification is only an artifact of the finite resolution of our observations.
This can be modified by absorption in the ISM of the lens galaxy (e.g. see,
Koopmans et al. 2003), but we will neglect this complication in what follows.
We start with a simple analytic model for the formation of Einstein rings, then
discuss numerical reconstructions of lenses sources and their ability to con-
straint mass distributions, and end with a survey of the properties of quasar
host galaxies.

10.1 An Analytic Model for Einstein Rings

Most of the lensed extended sources we see are dominated by an Einstein ring
– this occurs when the size of the source is comparable to the size of the astroid
caustic associated with producing four-image lenses. When the Einstein ring is
fairly thin, there is a simple analytic model for the formation of Einstein rings
(Kochanek, Keeton and McLeod 2001a). The important point to understand
is that the ring is a pattern rather than a simple combination of multiple
images. Mathematically, what we identify as the ring is the peak of surface
brightness as a function of angle around the lens galaxy. We can identify
the peak by finding the maximum intensity λ(χ) along radial spokes in
the image plane, θ(λ) = θ0 + λ(cosχ, sinχ). At a given azimuth χ we
find the extremum of the surface brightness of the image fD(θ) along each
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spoke, and these lie at the solutions of

0 = ∂λfD(θ) = ∇θfD(θ) · dθ
dλ

. (134)

The next step is to translate the criterion for the ring location onto the source
plane. In real images, the observed image fD(θ) is related to the actual sur-
face density fI(θ) by a convolution with the beam (PSF), fD(θ) = B ∗ fI(θ),
but for the moment we will assume we are dealing with a true surface bright-
ness map. Under this assumption fD(θ) = fI(θ) = fS(β) because of sur-
face brightness conservation. When we change variables the criterion for the
peak brightness becomes

0 = ∇βfS(β) ·M−1 · dθ
dλ

, (135)

where the inverse magnification tensor M−1 = dθ/dβ is introduced by the
variable transformation. Geometrically we must find the point where the tan-
gent vector of the curve, M−1 · dθ/dλ is perpendicular to the local gradient
of the surface brightness ∇βfS(β). These steps are illustrated in Fig. 63.

This result is true in general but not very useful. We next assume that
the source has ellipsoidal surface brightness contours, fS(m2), with m2 =
Δβ ·S ·Δβ where Δβ = β−β0 is the distance from the center of the source,
β0, and the matrix S is defined by the axis ratio qs = 1− εs ≤ 1 and position
angle χs of the source. We must assume that the surface brightness declines
monotonically, dfs(m2)/dm2 < 0, but require no additional assumptions about
the actual profile. With these assumptions the Einstein ring curve is simply
the solution of

0 = Δβ · S · μ−1 · dθ
dλ

. (136)

The ring curve traces out a four (two) lobed cloverleaf pattern when pro-
jected on the source plane if there are four (two) images of the center of the
source (see Fig. 63). These lobes touch the tangential caustic at their maxi-
mum ellipsoidal distance from the source center, and these cyclic variations
in the ellipsoidal radius produce the brightness variations seen around the
ring. The surface brightness along the ring is defined by fI(λ(χ), χ) for a
spoke at azimuth χ and distance λ(χ) found by solving (135). The extrema
in the surface brightness around the ring are located at the points where
∂χfI(λ(χ), χ) = 0, which occurs only at extrema of the surface brightness of
the source (the center of the source, Δβ = 0 in the ellipsoidal model), or
when the ring crosses a critical line of the lens and the magnification tensor
is singular (|M |−1 = μ−1 = 0) for the minima. These are general results that
do not depend on the assumption of ellipsoidal symmetry.

For an SIE lens in an external shear field we can derive some simple prop-
erties of Einstein rings to lowest order in the various axis ratios. Let the SIE
have critical radius b, axis ratio ql = 1 − εl and put its major axis along θ1.
Let the external shear have amplitude γ and orientation θγ . We let the source
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Fig. 63. An illustration of ring formation by an SIE lens. An ellipsoidal source
(left gray-scale) is lensed into an Einstein ring (right gray-scale). The source plane
is magnified by a factor of 2.5 relative to the image plane. The tangential caustic
(astroid on left) and critical line (right) are superposed. The Einstein ring curve is
found by looking for the peak brightness along radial spokes in the image plane. For
example, the spoke in the illustration defines point A on the ring curve. The long
line segment on the left is the projection of the spoke onto the source plane. Point A
corresponds to point A′ on the source plane where the projected spoke is tangential
to the intensity contours of the source. The ring in the image plane projects into the
four-lobed pattern on the source plane. Intensity maxima along the ring correspond
to the center of the source. Intensity minima along the ring occur where the ring
crosses the critical curve (e.g. point B). The corresponding points on the source
plane (e.g. B′) are where the astroid caustic is tangential to the intensity contours

be an ellipsoid with axis ratio qs = 1−εs and a major axis angle χs located at
position (β cosχ0, β sinχ0) from the lens center. The tangential critical line
of the lens lies at radius

rcrit/b = 1 +
εl
2

cos 2χ− γ cos 2(χ− χγ), (137)

while the Einstein ring lies at

rE

b
= 1 +

β

b
cos(χ− χ0) −

εl
6

cos 2χ+ γ cos 2(χ− χγ). (138)

At this order, the Einstein ring is centered on the source position rather than
the lens position. The orientation of the ring is generally perpendicular to that
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of the critical curve, although it need not be exactly so when the SIE and the
shear are misaligned due to the differing coefficients of the shear and ellipticity
terms in the two expressions. These results lead to a false impression that the
results do not depend on the shape of the source. In making the expansion we
assumed that all the terms were of the same order (β/b ∼ γ ∼ εl ∼ εs), but
we are really doing an expansion in the ellipticity of the potential of the lens
eΨ ∼ el/3 rather than the ellipticity of the density distribution of the lens, so
second order terms in the shape of the source are as important as first order
terms in the ellipticity of the potential. For example in a circular lens with no
shear (εl = 0, γ = 0) the ring is located at

rE

b
= 1 +

β

b

(2 − εs) cos(χ− χ0) + εs cos(2χs − χ− χ0)
2 − εs + εs cos 2(χs − χ)

, (139)

which has only odd terms in its multipole expansion and converges slowly
for flattened sources. In general, the ring shape is a weak function of the
source shape only if the potential is nearly round and the source is almost
centered on the lens. The structure of the lens potential dominates the even
multipoles of the ring shape, while the structure of the source dominates the
odd multipoles.

In fact, the shape of the ring can be used to simply “read off” the
amplitudes of the higher order multipoles of the lens potential. This is
nicely illustrated by an isothermal potential with arbitrary angular structure,
Ψ = rbF (χ) with 〈F (χ)〉 = 1 (see Zhao and Pronk 2001; Witt et al. 2000;
Kochanek et al. 2001a,b; Evans and Witt 2001) in the absence of any shear.
The tangential critical line of the lens is

rcrit

b
= F (χ) + F ′′(χ). (140)

If êχ and êθ are tangential and radial unit vectors relative to the lens center
and β0 is the distance of the source from the lens center, then the Einstein
ring curve is

rE

b
= F (χ) + F ′(χ)

êχ · S · êθ

êθ · S · êθ
+

β0 · S · êθ

êθ · S · êθ
→ F (χ) + β0 · êθ (141)

with the limit showing the result for a circular source.
Thus, by analyzing the multipole structure of the ring curve one can deduce

the multipole structure of the potential. While this has not been done non-
parametrically, the ability of standard ellipsoidal models to reproduce ring
curves strongly suggests that higher order multipoles cannot be significantly
different from the ellipsoidal scalings. Figure 64 shows two examples of fits to
the ring curves in PG1115+080 and B1938+666 using SIE plus external shear
lens models. The major systematic problem with fitting the real data are that
bright quasar images must frequently be subtracted from the image before the
ring curve can be extracted, and this can lead to artifacts like the wiggle in the
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Fig. 64. The Einstein ring curves in PG1115+080 (top) and B1938+666 (bottom).
The black squares mark the lensed quasar or compact radio sources. The light black
lines show the ring curve and its uncertainties. The black triangles show the intensity
minima along the ring curve (but not their uncertainties). The best fit model ring
curve is shown by the dashed curve, and the heavy solid curve shows the critical line
of the best fit model. The model was not constrained to fit the critical line crossings
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curve between the bright A1/A2 images of PG1115+080. Other than that, the
accuracy with which the ellipsoidal (plus shear) models reproduce the curves
is consistent with the uncertainties. In both cases the host galaxy is relatively
flat (qs = 0.58 ± 0.02 for PG1115+080 and 0.62 ± 0.14 for B1938+666). The
flatness of the host explains the “boxiness” of the PG1115+080 ring, while
the B1938+666 host galaxy shape is poorly constrained because the center
of the host is very close to the center of the lens galaxy so the shape of the
ring is insensitive to the shape of the source. Unless the source is significantly
offset from the center of the lens as we might see for the host galaxy of an
asymmetric two-image lens, it does not constrain the radial density profile
of the lens very well – after considerable algebraic effort you can show that
the dependence on the radial structure scales as |Δβ|4. It can, however, help
considerably in this circumstance because it eliminates the angular degrees
of freedom in the potential that make it impossible for two-image lenses to
constrain the radial density profile at all.

10.2 Numerical Models of Extended Lensed Sources

Obviously the ring curve and its extrema are an abstraction of the real struc-
ture of the lensed source. Complete modeling of extended sources requires a
real model for the surface brightness of the source. In many cases it is suffi-
cient to simply use a parameterized model for the source, but in other cases
it is not. The basic idea in any non-parametric method is that there is an op-
timal estimate of the source structure for any given lens model. This is most
easily seen if we ignore the smearing of the image by the beam (PSF) and
assume that our image is a surface brightness map. Since surface brightness
is conserved by lensing, fI(θ) = fS(β). For any lens model with parameters
p, the lens equations define the source position β(θ,p) associated with each
image position. If we had only single images of each source point, this would
be useless for modeling lenses. However, in a multiply imaged region, more
than one point on the image plane is mapped to the same point on the source
plane. In a correct lens model, all image plane points mapped to the same
source plane position should have the same surface brightness, while in an
incorrect model, points with differing surface brightnesses will be mapped to
the same source point. This provided the basis for the first non-parametric
method, sometimes known as the “Ring Cycle” method (Kochanek et al. 1989;
Wallington, Kochanek and Koo 1995). Suppose source plane pixel j is asso-
ciated with image plane pixels i = 1, ..., nj with surface brightness fi and
uncertainties σi. The goodness of fit for this source pixel is

χ2
j =

nj∑

i=1

(
fi − fs

σi

)2

, (142)

where fs will be our estimate of the surface brightness on the source plane.
For each lens model we compute χ2(p) =

∑
χ2

j and then optimize the lens
parameters to minimize the surface brightness mismatches.
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The problem with this algorithm is that we never have images that are
true surface brightness maps – they are always the surface brightness map
convolved with some beam (PSF). We can generalize the simple algorithm
into a set of linear equations. Although the source and lens plane are two-
dimensional, the description is simplified if we simply treat them as a vector
fS of source plane surface brightness and a vector f I of image plane flux
densities (i.e. including any convolution with the beam). The two images are
related by a linear operator A(p) that depends on the parameters of the
current lens model and the PSF. In the absence of a lens, A is simply the
real-space (PSF) convolution operator. In either case, the fit statistic

χ2 =
|f I −A(p)fS |2

σ2
(143)

(with uniform uncertainties here, but this is easily generalized) must first be
solved to determine the optimal source structure for a given lens model and
then minimized as a function of the lens model. The optimal source structure
dχ2/dfS = 0 leads to the equation that fS = A−1(p)f I . The problem, which
is the same as we discussed for non-parametric mass models in Sect. 4.7, is
that a sufficiently general source model when combined with a PSF will lead
to a singular matrix for which A(p)−1 is ill-defined – physically, there will be
wildly oscillating source models for which it is possible to obtain χ2(p) = 0.

Three approaches have been used to solve the problem. The first is Lens-
Clean (Kochanek and Narayan 1992; Ellithorpe, Kochanek and Hewitt 1996;
Wucknitz 2004), which is based on the Clean algorithm of radio astronomy.
Like the normal Clean algorithm, LensClean is a non-linear method using a
prior that radio sources can be decomposed into point sources for determining
the structure of the source. The second is LensMEM (Wallington, Kochanek
and Narayan 1996), which is based on the Maximum Entropy Method (MEM)
for image processing. The determination of the source structure is stabilized by
minimizing χ2 + λ

∫
d2βfS ln(fS/f0) while adjusting the Lagrange multiplier

λ such that at the minimum χ2 ∼ Ndof where Ndof is the number of degrees
of freedom in the model. Like Clean/LensClean, MEM/LensMEM is a non-
linear algorithm in which solutions must be solved iteratively. Both LensClean
and LensMEM can be designed to produce only positive-definite sources. The
third approach is linear regularization where the source structure is stabilized
by minimizing χ2 + λfS · H · fS (Warren and Dye 2003; Koopmans et al.
2003). The simplest choice for the matrix H is the identity matrix, in which
case the added criterion is to minimize the sum of the squares of the source
flux. More complicated choices for H will minimize the gradients or curvature
of the source flux. The advantage of this scheme is that the solution is simply
a linear algebra problem with (AT (p)A(p) + λH)fS = AT (p)f I .

In all three of these methods there are two basic systematic issues which
need to be addressed. First, all the methods have some sort of adjustable
parameter – the Lagrange multiplier λ in LensMEM or the linear regular-
ization methods and the stopping criterion in the LensClean method. As the
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lens model changes, the estimates of the parameter errors will be biased if the
treatment of the multiplier or the stopping criterion varies with changes in the
lens model in some poorly understood manner. Second, it is difficult to work
out the accounting for the number of degrees of freedom associated with the
model for the source when determining the significance of differences between
different lens models. Both of these problems are particularly severe when
comparing models where the size of the multiply imaged region depends on
the lens model. Since only multiply imaged regions supply any constraints on
the model, one way to improve the goodness of fit is simply to shrink the mul-
tiply imaged region so that there are fewer constraints. Since changes in the
radial mass distribution have the biggest effect on the multiply imaged region,
this makes estimates of the radial mass distribution particularly sensitive to
controlling these biases. It is fair to say that all these algorithms lack a com-
pletely satisfactory understanding of this problem. For radio data there are
added complications arising from the nature of interferometric observations,
which mean that good statistical models must work with the raw visibility
data rather than the final images (see Ellithorpe et al. 1996).

These methods, including the effects of the PSF, have been applied to de-
termining the mass distributions in 0047-2808 (Dye and Warren 2005), B0218
+357 (Wucknitz, Biggs and Browne 2004), MG1131+0456 (Chen, Kochanek
and Hewitt 1995, and MG1654+134 (Kochanek 1995a,b). We illustrate them
with the Dye and Warren (2005) results for 0047-2808 in Fig. 65. The mass
distribution consists of the lens galaxy and a cuspy dark matter halo, where
Fig. 65 shows the final constraints on the mass-to-light ratio of the stars in
the lens galaxy and the exponent of the central dark matter density cusp
(ρ ∝ r−γ). The allowed parameter region closely resembles earlier results
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Fig. 65. Models of 0047–2808 from Dye and Warren (2005). The right panel shows
the lensed image of the quasar host galaxy after the foreground lens has been sub-
tracted. The middle panel shows the reconstructed source and its position relative
to the tangential (astroid) caustic. The left panel shows the resulting constraints on
the central exponent of the dark matter halo (ρ ∝ r−γ) and the stellar mass-to-light
ratio of the lens galaxy. The dashed contours show the constraints for the same
model using the central velocity dispersion measurement from Koopmans and Treu
(2003)
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using either statistical constraints (Fig. 30 or stellar dynamics (Fig. 31). In
fact, the results using the stellar dynamical constraint from Koopmans and
Treu (2003) are superposed on the constraints from the host in Fig. 65, with
the host providing a tighter constraint on the mass distribution than the cen-
tral velocity dispersion. The one problem with all these models is that they
have too few degrees of freedom in their mass distributions by the standards
we discussed in Sect. 4.6. In particular, we know that four-image lenses require
both an elliptical lens and an external tidal shear in order to obtain a good
fit to the data (e.g. Keeton, Kochanek and Seljak 1997), while none of these
models for the extended sources allows for multiple sources for the angular
structure in the potential. In fact, the lack of an external shear probably drives
the need for dark matter in the 0047–2808 models. Without dark matter, the
decay of the stellar quadrupole and the low surface density at the Einstein
ring means that the models generate too small a quadrupole moment to fit
the data in the absence of a halo. The dark matter solves the problem both
through its own ellipticity and the reduction in the necessary shear with a
higher surface density near the ring (recall that γ ∝ 1 − 〈κ〉). Again see the
need for a greater focus on the angular structure of the potential.

10.3 Lensed Quasar Host Galaxies

The advantage of studying lensed quasars is that the lens magnification enor-
mously enhances the visibility of the quasar host. A typical HST PSF makes
the image of a point source have a mean surface brightness that declines as
R−3 with distance R from the quasar. Compared to an unlensed quasar, the
host galaxy of a lensed quasar is stretched along the Einstein ring leading
to an improvement in the contrast between the host in the quasar of μ2 for
an image magnified by μ – you gain μ3 by stretching the host away from
the quasar and lose μ because the quasar is magnified. Perpendicular to the
Einstein ring, the contrast becomes a factor of μ worse than for an unlensed
quasar. Since the alignment of the magnification tensor relative to the host
changes with each image, the segment of the host where contrast is lost will
correspond to a segment where it is gained for another image leading to a net
gain for almost all parts of the source when you consider all the images. The
distortions produced by lensing also mean the host structure is more easily
distinguished from the PSF. In a few cases, like SDSS0924+0219 in Fig. 54,
microlensing or substructure may provide a natural coronograph that sup-
presses the flux from the quasar but not that from the host. Despite naive
expectations (and TAC comments), the distortions have little consequence for
understanding the structure of the host even though a lens model is required
to produce a photometric model of the host.

The only extensive survey of lensed quasar hosts is that of Peng (2004).
Figure 66 shows the example of PG1115+080, a zs = 1.72 radio-quiet quasar
(RQQ). The Einstein ring image is easily visible even in a short, one-orbit
exposure. For comparison, we also took the final model for the quasar and
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Lensed Host Galaxy

Residuals If not lensed...
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Fig. 66. The host galaxy in PG1115+080. The top left panel shows the 1-orbit
NICMOS image from Impey et al. (1998). The top right panel shows the lensed
host galaxy after subtracting the quasar images and the lens galaxy, The lower
left panel shows the residuals after subtracting the host as well. For comparison, the
lower right panel shows what an image of an unlensed PG1115+080 quasar and host
would look like in the same integration time. The host galaxy is an H= 20.8 mag
late-type galaxy (Sersic index n = 1.4) with a scale length of Re = 1.5h−1 kpc. The
demagnified magnitude of the quasar is H= 19.0 mag. The axis ratio of the source,
qs = 0.65± 0.04 is consistent with the estimate of qs = 0.58± 0.02 from the simpler
ring curve analysis (Sect. 10.1, Fig. 64, Kochanek, Keeton and McLeod 2001a)

the source and produced the image that would be obtained in the same time
if we observed the quasar in the absence of lensing. It is quite difficult to see
the host, and this problem will carry through in any numerical analysis.

At low redshifts (z < 1), quasar host galaxies tend to be massive early-type
galaxies (e.g. Mclure et al. 1999; Dunlop et al. 2003). Over 80% of quasars
brighter than MV < −23.5 mag are in early-type galaxies with L >∼ 2L∗ and
effective radii of Re ∼ 10 kpc for z <∼ 0.5. Radio quiet quasars (RQQ) tend to
be in slightly lower luminosity hosts than radio loud quasars (RLQ) but only
by factors of ∼ 2 at redshift unity. Far fewer unlensed host galaxies have been
detected above redshift unity (e.g. Kukula et al. 2001; Ridgway et al. 2001)
with the surprising result that the host galaxies are 2–3 mag brighter than
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the typical host galaxy at low redshift and corresponded to ∼ 4L∗ galaxies.
Given that the low redshift hosts were already very massive galaxies it was
expected that higher redshift hosts would have lower masses because they were
still in the process of being assembled and forming stars (e.g. Kauffmann and
Haehnelt 2000). One simple explanation was that by selecting from bright
radio sources, these samples picked quasars with more massive black holes as
the redshift increased, creating a bias in favor of more massive hosts. The key
to checking for such a bias is to be able to detect far less luminous hosts, and
the improved surface brightness contrast provided by lensing the host galaxies
provides the means.

Figure 67 shows the observed H-band magnitudes of the lensed hosts as
compared to low redshift host galaxies and other studies of high redshift host

This work (CASTLES)

McLeod & McLeod 2001

Kukula et al.’01 (RLQ)
      "     "    "  (RQQ)

Ridgway et al. 2001

Fig. 67. Observed H-band magnitudes of quasar host galaxies. The solid (open)
points are secure (more questionable) hosts detected in the CASTLES survey of
lensed hosts. The low redshift points are from McLeod and McLeod (2001). All the
Ridgway et al. (2001) systems are radio quiet. For comparison we superpose the
evolutionary tracks for a non-evolving E/S0 galaxy (solid curve), an evolving E/S0
galaxy which starts forming stars at zf = 5 with a 1 Gyr exponentially decaying
star formation rate (long dashed line) and a star forming Sb/c model (short dashed
line). The evolution models are matched to the luminosity of an L∗ early-type
galaxy at redshift zero. The CASTLES observations can reliably detect hosts about
4 magnitudes fainter than the quasar
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galaxies. Although 30% of the lensed quasars are radio-loud, they have lu-
minosities similar to the lensed (or unlensed) radio-quiet hosts. There are no
hosts as bright as the Kukula et al. (2001) radio-loud quasar hosts. Once the
luminosities of the quasar and the host galaxy are measured we can compare
them to the theoretical expectations (Fig. 68). While the models agree with
the data at low redshift, they are nearly disjoint by z ∼ 3 in the sense that the
observed quasars and hosts are significantly more luminous than predicted.
The same holds for the Kukula et al. (2001) and Ridgway et al. (2001) sam-
ples, suggesting that black holes masses grow more rapidly than predicted by
the theoretical models or that accretion efficiencies were higher in the past.
Vestergaard (2004) makes a similar argument based on estimates of black hole
masses from emission line widths.
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Fig. 68. A comparison of the estimated rest frame absolute magnitudes of the
quasars and hosts as compared to the theoretical models for the evolution of galax-
ies and the growth of black holes as a function of redshift by Kauffmann and Haehnelt
(2000). The low redshift quasars from McLeod and McLeod (2001) occupy the trian-
gle in the upper left panel. At intermediate redshift the lensed host galaxies occupy
a region similar to the models, but the two distributions are nearly disjoint by z 	 3.
Both the hosts and the quasars are significantly more luminous than predicted. The
horizontal line marks the luminosity of an L∗ galaxy at z = 0



Part 2: Strong Gravitational Lensing 255

11 Does Strong Lensing Have a Future?

Well, you can hardly expect an answer of “No !” at this point, can you? Since
we have just spent nearly 200 pages on the astrophysical uses of lenses, there
is no point in reviewing all the results again here. Instead I suggest some goals
for the future.

Our first goal is to expand the sample of lenses from ∼ 100 to ∼ 200. While
80 lenses seems like a great many compared to even a few years ago, it is still
too few to pursue many interesting questions. The problem worsens if the
analysis must be limited to lenses meeting other criteria (radio lenses, lenses
found in a well-defined survey, lenses outside the cores of clusters,...) or if
the sample must be subdivided into bins (redshift, separation, luminosity,...).
For example, one of the most interesting applications of lenses will be to map
out the halo mass function. This is difficult to do with any other approach
because no other selection method works homogeneously on dark low-mass
halos, galaxies of different types, groups and clusters. Unlike any other sample
in astronomy, gravitational lenses are selected based on mass rather than
luminosity, so the same search method works for all halos – the separation
distribution of lenses is a direct mapping of the halo mass function. It is not
a trivial mapping because the structure of halos changes with mass, but the
systematics are far better than those of any other approach. The fact that
lenses are mass-selected also gives them an enormous advantage in studying
the evolution of galaxies with redshift over optically-selected samples where it
will be virtually impossible to select galaxies in the same manner at both low
and high redshift. The upgraded VLA and Merlin radio arrays are the most
promising tools for this objective.

Our second goal is to systematically monitor the variability of as many
lenses as possible. Time delays, if measured in large numbers and measured
accurately, can resolve most of the remaining issues about the mass distri-
butions of lenses. This is true even if you regard the H0 as unmeasured or
uncertain – the Hubble constant is the same number for all lenses, so as the
number of time delay systems increases, the contribution of the actual value of
the Hubble constant to constraining the mass distribution diminishes. At the
present time, we are certain that the typical early-type galaxy has a substan-
tial dark matter halo, but we are uncertain how it merges with the luminous
galaxy. Steady monitoring of microlensing of the source quasars by the stars
in the lens galaxy will also help to resolve this problem because the patterns of
the microlensing variability constrain both the stellar surface density near the
lensed images and the total density (Part 4, Schechter and Wambsganss 2002).
The constraints from time delays and microlensing will be complemented by
the continued measurement of central velocity dispersions.

Our third goal should be to obtain ultra-deep, high resolution radio maps
of the lenses to search for central images in order to measure the central sur-
face densities of galaxies and to search for supermassive black holes. Keeton
(2003a) showed that the dynamic ranges of the existing radio maps of lenses
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are 1–2 orders of magnitude too small to routinely detect central images given
the expected central surface densities of galaxies. Only very asymmetric dou-
bles like PMN1632–0033, where Winn et al. (2004) have detected a central
image, are likely to show central images with the present data. Once we reach
the sensitivity needed to detect central images, we will also either find central
black holes or set strict limits on their existence (Mao, Witt and Koopmans
2001). This is the only approach that can directly detect even quiescent black
holes and determine their masses at cosmological distances. The existing lim-
its could be considerably improved simply by co-adding the existing radio
maps either for individual lenses or even for multiple lenses in order to obtain
statistical limits.

Our fourth goal should be to unambiguously identify a “dark” satellite of
a lens galaxy. For starters we need to conduct complete statistical analyses of
lens galaxy satellites in general, by determining their mass functions and radial
distributions. As part of such an analysis we can obtain upper bounds on the
number of dark satellites. Then, with luck, we will find an example of a lens
that requires a satellite at a specific location for which there is no optical coun-
terpart. This may be too conservative a condition. For example, Peng (2004)
argues that much of the flux of Object X in MG0414+0534 (Fig. 7) is actually
coming from lensed images of the quasar host galaxy rather than the satellite.

Finally, lens magnification already means that it is far easier to do pho-
tometry of a lensed quasar host galaxy than an unlensed galaxy. The next
frontier is to measure the kinematics of cosmologically distant host galaxies.
This might already be doable for the host galaxy of Q0957+561 at zs = 1.41,
but will generally require either JWST or the next generation of ground
based telescopes. With larger lens samples we may also find more cases like
SDSS0924+0219 where gravitational lensing provides a natural coronograph
for the quasar.
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Quadri, R., Möller, O. & Natarajan, P. 2003, ApJ 597, 659
Ratnatunga, K.U., Griffiths, R.E. & Ostrander, E.J. 1999, AJ 117, 2010
Rees M.J. & Ostriker J.P. 1977, MNRAS 179, 541
Refsdal, S. 1964a, MNRAS 128, 295
Refsdal, S. 1964b, MNRAS 128, 307
Refsdall, S. & Surdej, J. 1994, RPPh 57, 117
Rest, A., van den Bosch, F.C., Jaffe, W., Tran, H., Tsvetanov, Z., Ford, H.C.,

Davies, J. & Schafer, J.L. 2001, AJ 121, 2431
Ridgway, S.E., Heckman, T.M., Calzetti, D. & Lehnert, M. 2001, ApJ 550,

122
Riess, A.G., Strolger, L.-G., Tonry, J., Casertano, S. et al. 2004, ApJ 607, 665
Rix H.-W., Maoz D., Turner E.L. & Fukugita M. 1994, ApJ 435, 49
Romanowsky, A.J. & Kochanek, C.S. 1998, ApJ 493, 64
Romanowsky, A.J. & Kochanek, C.S. 1999, ApJ 516, 18
Ros, E., Guirado, J.C., Marcaide, J.M., Perez-Torres, M.A., Falco, E.E.,
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