MASS 2023 Course: Gravitational Lenses

Predrag Jovanović

Astronomical Observatory Belgrade

Lecture 03

- Distance measures in cosmology:
 - Proper distance
 - * Hubble-Lemaître law
 - Comoving distance
 - Standard rulers and candles
 - * Angular diameter distance
 - * Luminosity distance
 - * Etherington's distance-duality relation
 - Light travel (or lookback) time
 - Comoving volume and intersection probability
 - Exercises

Distance measures in cosmology

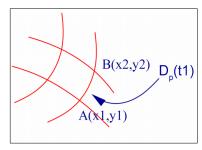
- Formula for conversion of cosmological redshift z into distance D?
- How to define *D* in expanding Universe?
- Answer: D may be defined in different ways, depending on how it is measured
- FLRW metric:

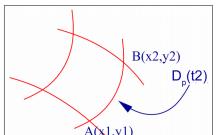
$$ds^{2} = c^{2}dt^{2} - R^{2}(t) \left[d\chi^{2} + S_{k}^{2}(\chi) d\Omega^{2} \right], \quad r = S_{k}(\chi), \quad S_{k}(\chi) = \begin{cases} \sin \chi, & k = +1 \\ \chi, & k = 0 \\ \sinh \chi, & k = -1 \end{cases}$$

- r, χ dimensionless comoving radial coordinates
- 1. Proper distance between two objects: $D_P = R(t) \chi$
 - distance which would be measured with rulers at the time of observation
 - increasing with time
- 2. Comoving distance between two objects: $D_C = R_0 \chi$
 - equals to proper distance times the relative scale factor of the Universe now to then, or (1 + z):

$$D_C = \frac{R_0}{R(t)}D_P = \frac{D_P}{a(t)} = (1+z)D_P$$

- constant over time
- D_C is equal to D_P at the present time





Proper distance: Hubble-Lemaître law

- R(t) represents the relative expansion of the Universe
- R(t) relates the **proper distance** between a pair of objects, moving with the Hubble flow in an expanding or contracting Universe:

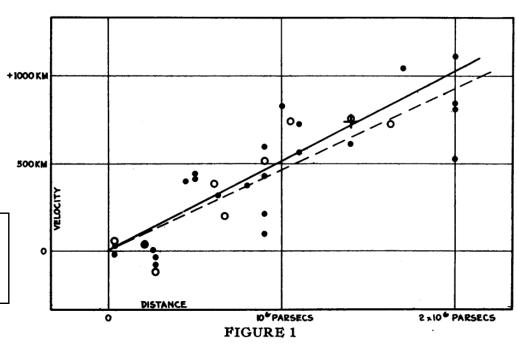
$$D(t) = \frac{R(t)}{R(t_0)}D(t_0)$$

• Lemaître, 1927, ASSB, 47, 49 (translated and reprinted in 1931, MNRAS, 91, 483):

$$V_r = \dot{D} = \frac{\dot{R}}{R_0} D_0 = \frac{\dot{R}}{R} D = H \cdot D$$

• *z* due to Doppler effect:

$$z = \frac{V_r}{c} \Rightarrow D(z) = \frac{c}{H}z$$



Velocity-Distance Relation among Extra-Galactic Nebulae.

Hubble, 1929, PNAS, 15, 168

Line-of-sight comoving distance

- Derivation from FLRW metric: $ds^2 = c^2 dt^2 R^2(t) \left[d\chi^2 + S_k^2(\chi) d\Omega^2 \right]$
- For photons: ds = 0, and for their radial tracks: $d\theta = d\varphi = 0$, so:

$$ds = 0 \land d\Omega = 0 \Rightarrow cdt = R(t)d\chi \Rightarrow d\chi = c\frac{dt}{R(t)} \Rightarrow \chi(t) = c\int_{t}^{t_0} \frac{dt'}{R(t')}$$

• On the other hand:

$$1 + z = \frac{R_0}{R} \Rightarrow \dot{z} = -R_0 \frac{\dot{R}}{R^2} \Leftrightarrow \frac{dz}{dt} = -\frac{R_0}{R} H \Leftrightarrow \left[\frac{R_0}{R(t)} dt = -\frac{dz}{H(z)} \right]$$

$$D_C(t) = R_0 \chi(t) = c \int_t^{t_0} \frac{R_0}{R(t')} dt' \Leftrightarrow \left| D_C(z) = c \int_0^z \frac{dz'}{H(z')} \right|$$

- H(z) is given by the 1st Friedmann equation for Λ CDM model, and then:
- Line-of-sight comoving distance:

$$D_C(z) = D_H \int_0^z \frac{dz'}{\sqrt{\Omega_M (1+z')^3 + \Omega_\kappa (1+z')^2 + \Omega_\Lambda}}, \quad D_H = \frac{c}{H_0}$$

• Theoretical cosmological distance along radial coordinate in FLRW metric

Transverse comoving distance

• If $\delta\theta$ is an angle between two objects at the same z, then the distance between them is: $\delta\theta$ $D_{\rm M}(z)$, where $D_{\rm M}(z)$ is their **transverse comoving** distance:

$$D_{M}(z) = \begin{cases} D_{H} \frac{1}{\sqrt{\Omega_{\kappa}}} \sinh[\sqrt{\Omega_{\kappa}} D_{C}(z)/D_{H}], & \Omega_{\kappa} > 0 \\ D_{C}(z), & \Omega_{\kappa} = 0 \\ D_{H} \frac{1}{\sqrt{|\Omega_{\kappa}|}} \sin[\sqrt{|\Omega_{\kappa}|} D_{C}(z)/D_{H}], & \Omega_{\kappa} < 0 \end{cases}$$

• Analytic solution:

$$D_M(z) = D_H \frac{2\left[2 - \Omega_M(1-z) - (2 - \Omega_M)\sqrt{1 + \Omega_M z}\right]}{\Omega_M^2(1+z)}, \ \Omega_{\Lambda} = 0$$

Measuring distances by standard rulers and standard candles



Angular diameter distance

- D_A is Measured by <u>standard cosmological rulers</u>: objects which linear diameter s is known and does not change with cosmological time
- Defined as the ratio of an object's physical transverse size s to its observed angular size θ (in radians)
- Calculating D_A from z:

$$D_A(z) = \frac{D_M(z)}{1+z}$$

• Angular diameter distance between two objects at redshifts z_1 and z_2 :

$$D_{A12} = \frac{1}{1+z_2} \left[D_{M2} \sqrt{1 + \Omega_{\kappa} \frac{D_{M1}^2}{D_H^2}} - D_{M1} \sqrt{1 + \Omega_{\kappa} \frac{D_{M2}^2}{D_H^2}} \right]$$

where D_{MI} and D_{M2} are the corresponding comoving distances

• D_A is often used in the theory of gravitational lensing

Luminosity distance

- D_L is obtained from observed flux f of standard cosmological candles: objects which luminosity L is known and does not change with cosmological time
- D_L is used in the case of SN Ia
- Calculating D_L from z:

$$D_L(z) = (1+z)D_M(z)$$

• Etherington's distance-duality relation:

$$D_L(z) = (1+z)^2 D_A(z)$$

- Valid for all cosmological models based on the Riemannian geometry
- Using inappropriate D causes errors which increase with z
- Typical mistake: calculating L from f using proper distance obtained by Hubble's law (instead of D_L)

Light-travel distance

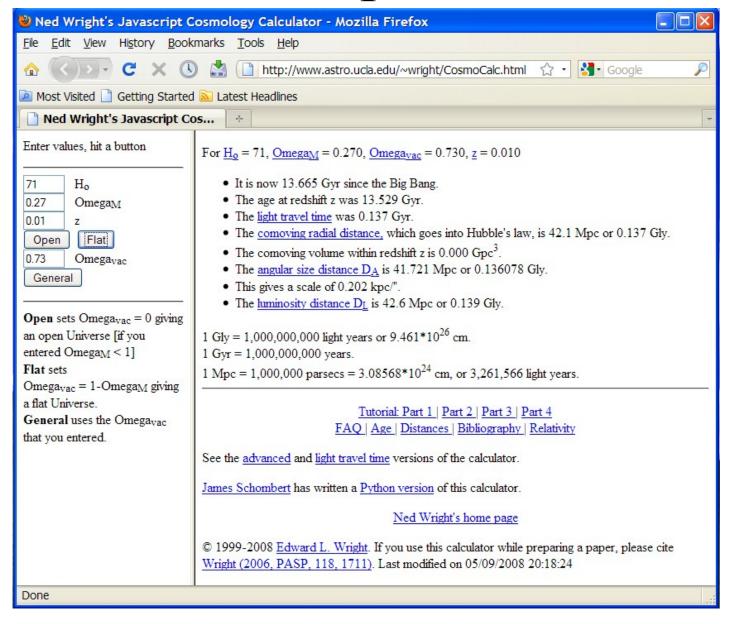
- Light-travel (lookback) time: time that it took light to reach the observer
- Difference between the age of the universe at the time of observation and its age at the time when the light was emitted:

$$t_L(z) = t_H \int_0^z \frac{dz'}{(1+z')E(z')}$$

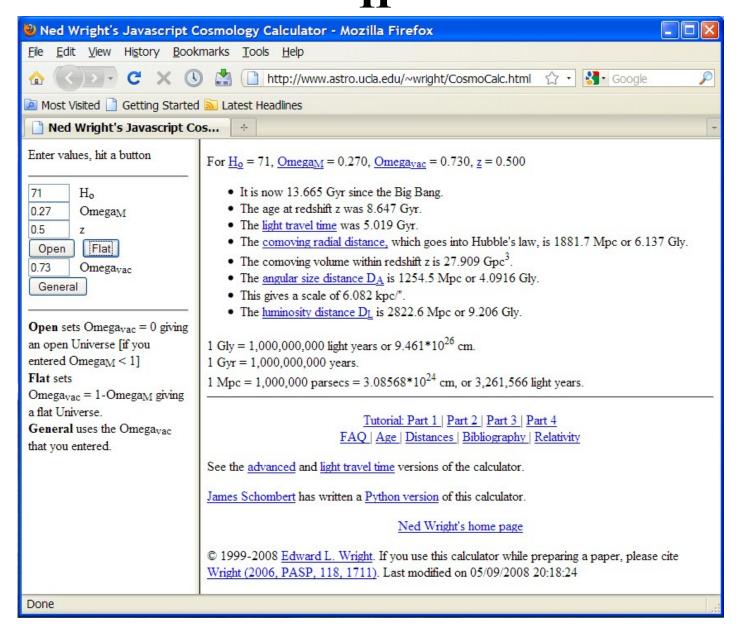
where
$$E(z) = \frac{H(z)}{H_0} = \sqrt{\Omega_M (1+z')^3 + \Omega_\kappa (1+z')^2 + \Omega_\Lambda}$$

- Corresponding distance is: $D_T(z) = c \cdot t_L(z)$
- t_L is used for time delays between images of gravitational lenses

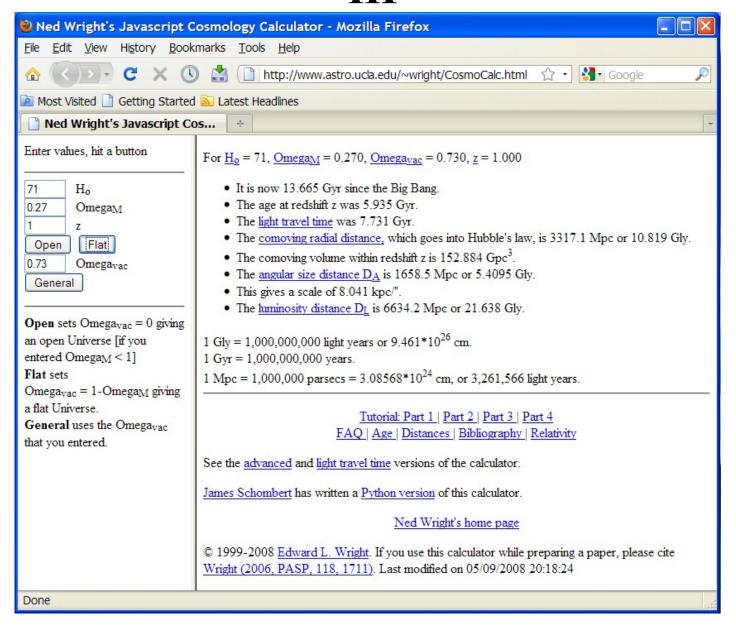
Numerical comparison of cosmological distances



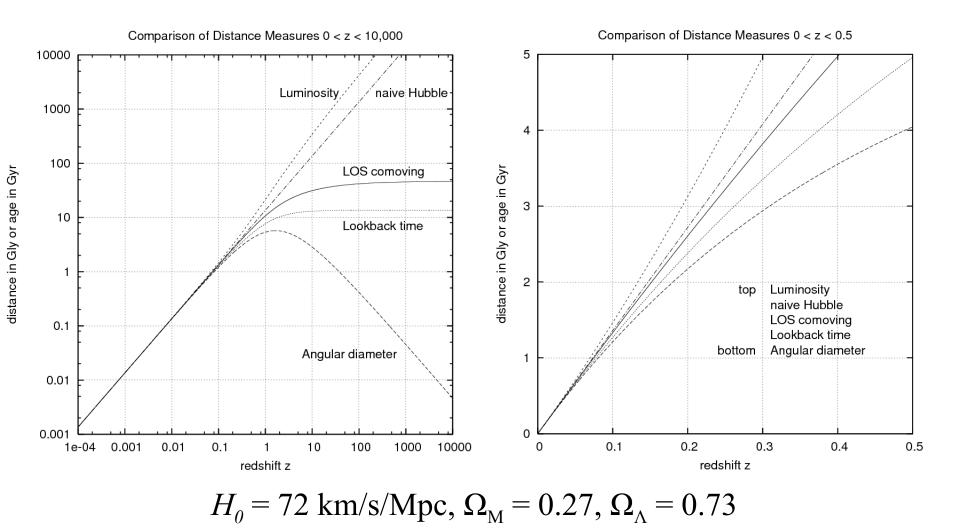
Numerical comparison of cosmological distances



Numerical comparison of cosmological distances III



Graphical comparison between cosmological distances



Comoving volume

- Volume in which number density of non-evolving objects locked into Hubble flow is constant with *z*
- Equals to proper volume times three factors of the relative scale factor now to then, or $(1+z)^3$
- Element of comoving volume for solid angle $d\Omega$ and redshift interval dz:

$$dV_C(z) = D_H \frac{(1+z)^2 D_A^2(z)}{E(z)} d\Omega dz$$

• Total all-sky comoving volume, out to redshift z:

$$V_{C} = \begin{bmatrix} \left(\frac{4\pi D_{H}^{3}}{2\Omega_{\kappa}}\right) \left[\frac{D_{M}}{D_{H}}\sqrt{1 + \Omega_{\kappa} \frac{D_{M}^{2}}{D_{H}^{2}}} - \frac{1}{\sqrt{|\Omega_{\kappa}|}} \operatorname{arcsinh}\left(\sqrt{|\Omega_{\kappa}|} \frac{D_{M}}{D_{H}}\right) \right], & \Omega_{\kappa} > 0 \end{bmatrix}$$

$$V_{C} = \begin{bmatrix} \frac{4\pi}{3} D_{M}^{3}, & \Omega_{\kappa} = 0 \\ \left(\frac{4\pi D_{H}^{3}}{2\Omega_{\kappa}}\right) \left[\frac{D_{M}}{D_{H}}\sqrt{1 + \Omega_{\kappa} \frac{D_{M}^{2}}{D_{H}^{2}}} - \frac{1}{\sqrt{|\Omega_{\kappa}|}} \operatorname{arcsin}\left(\sqrt{|\Omega_{\kappa}|} \frac{D_{M}}{D_{H}}\right) \right], & \Omega_{\kappa} < 0 \end{bmatrix}$$

Intersection probability

- Given a population of objects with:
 - 1. n(z) comoving number density (number per unit volume) and
 - 2. $\sigma(z)$ cross section (area)
- Differential probability that a line of sight will intersect one of the objects in redshift interval dz at redshift z:

$$dP(z) = n(z)\sigma(z)D_H \frac{(1+z)^2}{E(z)}dz$$

Exam question

1. Distance measures in cosmology

Literature

Articles:

- 1. David W. Hogg, 2000, *Distance measures in cosmology*, arXiv:astro-ph/9905116v4
- 2. Carroll, S. M., Press, W. H. & Turner, E. L. 1992, *The cosmological constant*, ARA&A, 30, 499
- 3. Davis, T. M. & Lineweaver, C. H. 2004, Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe, PASA, 21, 97 (arXiv:astro-ph/0310808)

Online cosmology calculators:

- 4. A list of cosmology calculators: http://ned.ipac.caltech.edu/help/cosmology_calc.html
- 5. Ned Wright's Javascript Cosmology Calculator: http://www.astro.ucla.edu/~wright/CosmoCalc.html

Exercise 1

Consider two flat ($\Omega_k = 0$), expanding universes: One that is matter dominated, i.e. $\Omega_M = 1$, and one that is dominated by a cosmological constant, i.e. $\Omega_{\Lambda} = 1$.

- a) Derive for both universes an expression for the comoving distance as a function of redshift z.
- b) The "observable universe" is the part of the universe up to redshift $z = \infty$. Compute for both of our universes the comoving volume of this region. Is there a qualitative difference between the two volumes?

Exercise 2

Assume a spatially flat universe, with $\Omega_{\text{tot}} = \Omega_{M} = 1$ and derive the formulas for angular diameter distance $D_{A}(z)$ and luminosity distance $D_{L}(z)$ in this cosmological model.

Exercise 3

Assume a flat ($\Omega_k = 0$) cosmological model with $H_0 = 71/\text{km/s/Mpc}$ and $\Omega_{\rm M} = 0.27$, and graphically compare the following cosmological distances: $D_C(z)$, $D_A(z)$, $D_L(z)$ and naive Hubble distance: $D_H(z) = c \ z \ / \ H_0$ (see Hogg 2000 and Davis & Lineweaver 2004).

Exercise 4

Write a Python script which computes angular diameter distance between two objects at redshifts z_1 and z_2 in the case of a flat $(\Omega_k = 0)$ cosmological model with $H_0 = 71/\text{km/s/Mpc}$ and $\Omega_M = 0.27$, and use it to reconsider the exercise with an alien astronomer by calculating all three angular diameter distances: $D_A(0, z_a)$ - between you and an alien at redshift $z_a = 1$, $D_A(0, z_q)$ - between you and a quasar at $z_q = 2$ and $D_A(z_a, z_q)$ - between alien and quasar.

a)
$$D_c(z) = D_H \int_0^z \frac{dz'}{\sqrt{\Omega_M (1+z')^3 + \Omega_\kappa (1+z')^2 + \Omega_\Lambda}}$$

1.
$$\Omega_{\rm M} = 1$$
, $\Omega_{\Lambda} = 0$, $\Omega_{\kappa} = 0$: $D_C(z) = D_H \int_0^z \frac{dz'}{\sqrt{(1+z')^3}} = 2D_H \left(1 - \frac{1}{\sqrt{1+z}}\right)$

2.
$$\Omega_{\rm M} = 0, \, \Omega_{\Lambda} = 1, \, \Omega_{\kappa} = 0$$
: $D_C(z) = D_H \int_0^z dz' = D_H z$

b)
$$\Omega_{\kappa} = 0$$
: $V_C(z) = \frac{4\pi}{3} D_M^3(z) = \frac{4\pi}{3} D_C^3(z)$

1.
$$\Omega_{\rm M} = 1$$
, $\Omega_{\Lambda} = 0$: $V_C = \frac{32\pi}{3} D_H^3$

2.
$$\Omega_{\rm M} = 0$$
, $\Omega_{\Lambda} = 1$: $V_C = \infty$

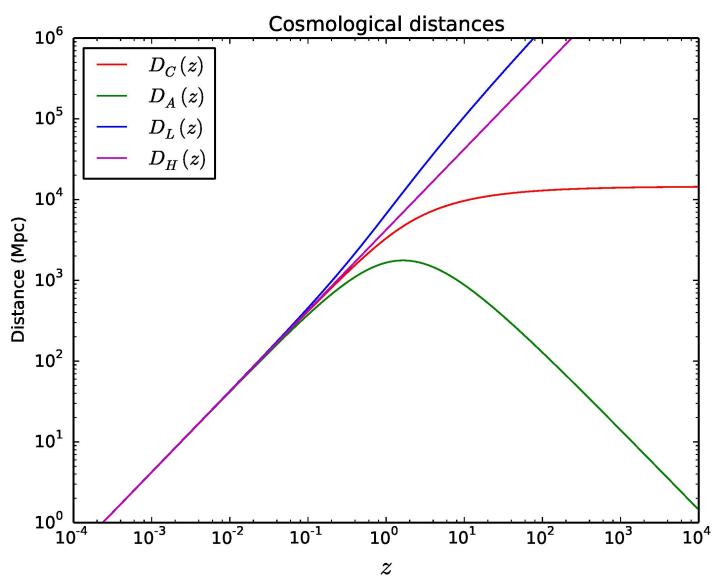
• The volume of the observable Universe in the case of the cosmological constant is not finite, while it is finite in the case of a matter dominated universe

$$\Omega_{\kappa} = 0 \Rightarrow D_A(z) = \frac{D_M(z)}{1+z} = \frac{D_C(z)}{1+z}$$

$$\Omega_M = 1 \wedge \Omega_\Lambda = 0 \wedge \Omega_\kappa = 0 \Rightarrow D_C(z) = 2D_H \left(1 - \frac{1}{\sqrt{1+z}}\right) \Rightarrow 0$$

$$D_A(z) = \frac{2D_H}{1+z} \left(1 - \frac{1}{\sqrt{1+z}} \right)$$

$$D_L(z) = (1+z)^2 D_A(z) = 2D_H(1+z) \left(1 - \frac{1}{\sqrt{1+z}}\right)$$



Solution is obtained by Python script "cosm_dist.py"

Output from Python script "DA.py":

Enter the 1st redshift: 1.0

Enter the 2nd redshift: 2.0

Enter the Hubble constant: 71.0

Enter the Omega matter: 0.27

Angular diameter distance DA(0,z1) = 1658.7 Mpc Angular diameter distance DA(0,z2) = 1748.4 Mpc

Angular diameter distance DA(z1,z2) = 642.6 Mpc