# MASS 2023 Course: <br> Gravitational Lenses 

Predrag Jovanović
Astronomical Observatory Belgrade

## Lecture 05

1. Gravitational lensing theory

- Geometrically thin lens
- Deflection angle
- Lens equation
- Einstein radius

2. Point-like lens model

- Solving the lens equation
- Image positions
- Magnification of images

3. Exercises

## Reminder to Lecture 01



- Light deflection angle: $\alpha=\frac{4 G M}{c^{2} \xi}$


## Gravitational lensing theory

- Geometrically thin lens: the field equations of GR can be linearized if the gravitational field is weak (i.e. for the small deflection angle), and the ray can be approximated as a straight line near the deflecting mass
- Lens equation (see the figure): $\vec{\eta}=\frac{D_{s}}{D_{d}} \vec{\xi}-D_{d s} \overrightarrow{\hat{\alpha}}(\vec{\xi})$
- Light deflection angle: $\overrightarrow{\hat{\alpha}}(\vec{\xi})=\frac{4 G M}{c^{2}} \frac{\vec{\xi}}{\xi^{2}}$
- Angular coordinates $\vec{\beta}$ and $\vec{\theta}$, and scaled (reduced) deflection angle $\vec{\alpha}(\vec{\theta})$ :
$\vec{\eta}=D_{s} \vec{\beta}, \vec{\xi}=D_{d} \vec{\theta}, \vec{\alpha}(\vec{\theta})=\frac{D_{d s}}{D_{s}} \overrightarrow{\hat{\alpha}}(\vec{\theta}) \Rightarrow$
- Dimensionless lens equation:

$$
\vec{\beta}=\vec{\theta}-\vec{\alpha}(\vec{\theta})
$$

- Angular diameter distances between the observer and lens, observer and source, and
 lens and source: $D_{d}=D_{A}\left(0, z_{d}\right), D_{s}=D_{A}\left(0, z_{s}\right), D_{d s}=D_{A}\left(z_{d}, z_{s}\right)$


## Einstein radius

- Solution of the lens equation for a point mass $M$ and perfect alignment between the observer, lens and source: $\vec{\eta}=\vec{\beta}=0 \Rightarrow$ Einstein radius
- Linear (in the lens plane): $\xi_{E}=\sqrt{\frac{4 G M}{c^{2}} \frac{D_{d} D_{d s}}{D_{s}}}$
- Angular: $\theta_{E}=\frac{\xi_{E}}{D_{d}}=\sqrt{\frac{4 G M}{c^{2} D}}$, where $D$ is effective lens distance: $D=\frac{D_{d} D_{s}}{D_{d s}}$
- Projected (in the source plane):
$\eta_{E}=\frac{D_{s}}{D_{d}} \xi_{E}=\sqrt{\frac{4 G M}{c^{2}} \frac{D_{s} D_{d s}}{D_{d}}}$
- Typical Einstein radius:
- for a galaxy: on the order of 1 "
- for galaxy clusters: on the order of $10^{\prime \prime}$
- for a star: on the order of $\mu$ as
- Separation between the images is twice the average Einstein radius

- Powerful method for measuring the masses of distant objects


## Observed Einstein rings



Einstein Ring Gravitational Lenses
Hubble Space Telescope - Advanced Camera for Surveys

## Point-like lens model

- Deflection angle:

$$
\begin{aligned}
& \vec{\xi}=D_{d} \vec{\theta} \Rightarrow \overrightarrow{\hat{\alpha}}(\vec{\theta})=\frac{4 G M}{c^{2} D_{d}} \frac{\vec{\theta}}{\theta^{2}} \Rightarrow \\
& \vec{\alpha}(\vec{\theta})=\frac{4 G M}{c^{2}} \frac{D_{d s}}{D_{d} D_{s}} \frac{\vec{\theta}}{\theta^{2}}=\theta_{E}^{2} \frac{\vec{\theta}}{\theta^{2}}
\end{aligned}
$$

- Lens equation:

$$
\vec{\beta}=\vec{\theta}-\vec{\alpha}(\vec{\theta}) \Leftrightarrow \vec{\beta}=\vec{\theta}-\theta_{E}^{2} \frac{\vec{\theta}}{\theta^{2}}
$$

- Image positions:

$\vec{\beta}=\vec{\theta}-\theta_{E}^{2} \frac{\vec{\theta}}{\theta^{2}} / \cdot \vec{\theta} \Rightarrow \theta^{2}-\overbrace{\vec{\beta} \cdot \vec{\theta}}^{=\beta \theta}-\theta_{E}^{2}=0 \Leftrightarrow \theta^{2}-\beta \theta-\theta_{E}^{2}=0 \Rightarrow$ $\theta_{1,2}=\frac{1}{2}\left(\beta \pm \sqrt{\beta^{2}+4 \theta_{E}^{2}}\right)$


## Point-like lens: positions of two images

- Positions of the lens and source normalized to $\theta_{E}$ :

$$
\vec{x}=\frac{\vec{\theta}}{\theta_{E}} \wedge \vec{y}=\frac{\vec{\beta}}{\theta_{E}} \Rightarrow
$$

- Lens equation: $\vec{y}=\vec{x}-\frac{\vec{x}}{x^{2}} \Leftrightarrow \vec{y}=\vec{x}-\frac{\vec{e}}{x} \Rightarrow$
- Image positions: $x_{1,2}=\frac{1}{2}\left(y \pm \sqrt{y^{2}+4}\right)$


Left: images of a point-like source Right: images of an extended (circular) source


## Point-like lens: magnification of images

- Gravitational lensing preserves surface brightness, but changes the apparent solid angle of a source
- Magnification of an image - ratio between the solid angles of the image and the source, and for a circularly symmetric lens: $\mu=\frac{\theta}{\beta} \frac{d \theta}{d \beta}$
- In the case of a point lens:
$\theta^{2}-\beta \theta-\theta_{E}^{2}=0 \Rightarrow \beta=\theta-\frac{\theta_{E}^{2}}{\theta} \wedge d \beta=\left(1+\frac{\theta_{E}^{2}}{\theta^{2}}\right) d \theta \Rightarrow$
$\mu_{1,2}=\left(1-\left[\frac{\theta_{E}}{\theta_{1,2}}\right]^{4}\right)^{-1} \Leftrightarrow \mu_{1,2}=\left(1-\frac{1}{x_{1,2}^{4}}\right)^{-1} \Leftrightarrow \mu_{1,2}=\frac{1}{2} \pm \frac{y^{2}+2}{2 y \sqrt{y^{2}+4}}$
- Magnification $\mu_{2}$ of the image inside the Einstein radius is negative (mirrorinverted): negative parity
- $y=0 \Rightarrow$ Einstein ring of a point source has infinite magnification
- Total magnification: sum of the absolute values of two image magnifications: $\mu=\left|\mu_{1}\right|+\left|\mu_{2}\right|=\mu_{1}-\mu_{2}=\frac{y^{2}+2}{y \sqrt{y^{2}+4}}>1$
- Sum of two image magnifications: $\mu_{1}+\mu_{2}=1$


## Exam questions

1. Lens equation and Einstein radius
2. Point-like lenses: lens equation, positions and magnification of images

## Literature

## Textbook:

- Gravitational Lensing: Strong, Weak and Micro, Book Series: SaasFee Advanced Courses

1. P. Schneider - Introduction to Gravitational Lensing and

Cosmology
2. C. S. Kochanek - Strong Gravitational Lensing
3. P. Schneider - Weak Gravitational Lensing
4. J. Wambsganss - Gravitational Microlensing

## Exercise 1

Calculate the angular Einstein radius in the case of a lensing galaxy with a mass $M=10^{12} M_{\odot}$ at a redshift of $z_{d}=0.5$ and a source at redshift $z_{s}=2.0$. Assume the flat cosmological model with $H_{0}=71$ $\mathrm{km} / \mathrm{s} / \mathrm{Mpc}, \Omega_{\mathrm{M}}=0.27$ and $\Omega_{\Lambda}=0.73$, and use the Ned Wright's Javascript Cosmology Calculator to calculate the cosmological distances: http://www.astro.ucla.edu/~wright/CosmoCalc.html

Note that it is convenient to use the gravitational constant expressed in the following units: $G \approx 4.302 \times 10^{-3} \frac{\mathrm{pc}}{M_{\odot}} \frac{\mathrm{km}^{2}}{\mathrm{~s}^{2}}$

## Exercise 2

Estimate the mass of the lensing galaxy of Einstein Cross (Q2237+030) from angular separation of its images. Take this separation and the redshifts from CASTLES Gravitational Lens Data Base at: http://www.cfa.harvard.edu/castles/.
Assume the same cosmological model as in previous exercise.
Compare the obtained mass inside Einstein ring with the corresponding estimates given in Table 1 of Wambsganss \& Paczynski, 1994, AJ, 108, 1156.

## Exercise 3

What is the total magnification in the case of a single point lens, when the source lies on the Einstein radius?

## Exercise 4

Consider a point-like lens with Einstein radius of 1 " located at coordinate origin, and calculate the images of a point-like background source located at $\vec{\beta}=\left(0^{\prime \prime} .3,0^{\prime \prime} .3\right)$.

Note that the position vectors of the source $\vec{\beta}=\left(\beta_{x}, \beta_{y}\right)$ and images
$\vec{\theta}=\left(\theta_{x}, \theta_{y}\right)$ are always codirectional, and thus they have the same unit vectors: $\vec{e}=\frac{\vec{\theta}}{\theta}=\frac{\vec{\beta}}{\beta} \quad \Rightarrow \quad \frac{\theta_{x, y}}{\theta}=\frac{\beta_{x, y}}{\beta}$.

## Exercise 5

Consider a point-like lens with Einstein radius of 1" located at coordinate origin, and calculate the images of a circular background source with radius of $0 " .2$, assuming that it is located at the following five different positions along the $x$-axis: $-0 " .5,-0^{\prime \prime} .21,0.0$, $0 " .21$ and $0 " .5$.

## Solution 1

$$
\begin{aligned}
& D_{d}=1254.5 \mathrm{Mpc} \\
& D_{s}=1748.1 \mathrm{Mpc} \\
& D_{d s}=\left(D_{M s}-D_{M d}\right) /\left(1+z_{s}\right)=(5244.3-1881.7) /(1+2.0) \mathrm{Mpc}=1120.9 \mathrm{Mpc} \\
& D=\frac{D_{d} D_{s}}{D_{d s}}=1956.4 \mathrm{Mpc}
\end{aligned}
$$

Angular Einstein radius: $\theta_{E}=\sqrt{\frac{4 G M}{c^{2} D}} \approx 1 \times 10^{-5} \mathrm{rad} \approx 2^{\prime \prime}$
Note: $1 \mathrm{rad}=(648000 / \pi)^{\prime \prime} \approx 206265^{\prime \prime}$

## Solution 2

$z_{s}=1.69, z_{d}=0.04$
Angular separation of the images (size) $\approx 2 \theta_{E}=1 " .78$
$\theta_{E}=1^{\prime \prime} .78 / 2=0 " .89=(0.89 / 206265) \mathrm{rad}=4.315 \times 10^{-6} \mathrm{rad}$ $D_{d}=161.1 \mathrm{Mpc}$
$D_{s}=1764.8 \mathrm{Mpc}$
$D_{d s}=\left(D_{M s}-D_{M d}\right) /\left(1+z_{s}\right)=(4747.3-167.5) /(1+1.69) \mathrm{Mpc}=1702.5 \mathrm{Mpc}$
$D=\frac{D_{d} D_{s}}{D_{d s}}=167 \mathrm{Mpc}$
$M=\frac{c^{2} D \theta_{E}^{2}}{4 G}=1.6 \times 10^{10} M_{\odot}$
Table 1 from Wambsganss \& Paczynski, 1994, AJ, 108, 1156: $M \approx 1.5 \times 10^{10} M_{\odot}$

## Solution 3

When the source lies on the Einstein radius, we have $\beta=\theta_{E}$, i.e. $y=1$, and the total magnification becomes:

$$
\mu=1.17+0.17=1.34
$$

## Solution 4



Solution is obtained by Python script "pointl_points.py"

## Solution 5




Point-like lens

- Einstein ring
- Circular source
- $\operatorname{Image}_{1}(+)$
- Image $_{2}(-)$

Solution is obtained by Python script "pointl_circs.py"

