MASS 2023 Course: Gravitational Lenses

Predrag Jovanović Astronomical Observatory Belgrade

Lecture 05

- 1. Gravitational lensing theory
 - Geometrically thin lens
 - Deflection angle
 - Lens equation
 - Einstein radius
- 2. Point-like lens model
 - Solving the lens equation
 - Image positions
 - Magnification of images
- 3. Exercises

Reminder to Lecture 01

• Light deflection angle: $\alpha = \frac{4GM}{c^2\xi}$

Gravitational lensing theory

- Geometrically thin lens: the field equations of GR can be linearized if the gravitational field is weak (i.e. for the small deflection angle), and the ray can be approximated as a straight line near the deflecting mass
- Lens equation (see the figure):

$$\vec{\eta} = \frac{D_s}{D_d} \vec{\xi} - D_{ds} \vec{\hat{\alpha}}(\vec{\xi})$$

- Light deflection angle: $\vec{\hat{\alpha}}(\vec{\xi}) = \frac{4GM}{c^2} \frac{\xi}{\xi^2}$
- Angular coordinates $\vec{\beta}$ and $\vec{\theta}$, and scaled (reduced) deflection angle $\vec{\alpha}(\vec{\theta})$:

$$\vec{\eta} = D_s \vec{\beta}, \ \vec{\xi} = D_d \vec{\theta}, \ \vec{\alpha}(\vec{\theta}) = \frac{D_{ds}}{D_s} \vec{\hat{\alpha}}(\vec{\theta}) \Rightarrow$$

• Dimensionless lens equation:

$$\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$$

• Angular diameter distances between the observer and lens, observer and source, and lens and source: $D_d = D_A(0, z_d), D_s = D_A(0, z_s), D_{ds} = D_A(z_d, z_s)$

Einstein radius

- Solution of the lens equation for a point mass M and perfect alignment between the observer, lens and source: $\vec{\eta} = \vec{\beta} = 0 \Rightarrow$ Einstein radius
- Linear (in the lens plane): $\xi_E = \sqrt{\frac{4GM}{c^2} \frac{D_d D_{ds}}{D_s}}$

• Angular: $\theta_E = \frac{\xi_E}{D_d} = \sqrt{\frac{4GM}{c^2D}}$, where

D is effective lens distance: $D = \frac{D_d D_s}{D_{ds}}$

• **Projected** (in the source plane):

 $\eta_E = \frac{D_s}{D_d} \xi_E = \sqrt{\frac{4GM}{c^2} \frac{D_s D_{ds}}{D_d}}$

- Typical Einstein radius:
 - for a galaxy: on the order of 1"
 - for galaxy clusters: on the order of 10"
 - for a star: on the order of μ as
- Separation between the images is twice the average Einstein radius

Observed Einstein rings

Einstein Ring Gravitational Lenses Hubble Space Telescope • Advanced Camera for Surveys

NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team

STScI-PRC05-32

Point-like lens model

• Deflection angle:

$$\vec{\xi} = D_d \vec{\theta} \Rightarrow \vec{\hat{\alpha}}(\vec{\theta}) = \frac{4GM}{c^2 D_d} \frac{\vec{\theta}}{\theta^2} \Rightarrow$$
$$\vec{\alpha}(\vec{\theta}) = \frac{4GM}{c^2} \frac{D_{ds}}{D_d D_s} \frac{\vec{\theta}}{\theta^2} = \theta_E^2 \frac{\vec{\theta}}{\theta^2}$$

• Lens equation:

$$\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta}) \Leftrightarrow \left[\vec{\beta} = \vec{\theta} - \theta_E^2 \frac{\vec{\theta}}{\theta^2} \right]$$

• Image positions:

 $\vec{\beta} = \vec{\theta} - \theta_E^2 \frac{\vec{\theta}}{\theta^2} / \cdot \vec{\theta} \Rightarrow \theta^2 - \vec{\beta} \cdot \vec{\theta} - \theta_E^2 = 0 \Leftrightarrow \theta^2 - \beta \theta - \theta_E^2 = 0 \Rightarrow$

$$\theta_{1,2} = \frac{1}{2} \left(\beta \pm \sqrt{\beta^2 + 4\theta_E^2} \right)$$

Point-like lens: positions of two images

- Positions of the lens and source normalized to θ_E : $\vec{x} = \frac{\vec{\theta}}{\theta_E} \wedge \vec{y} = \frac{\vec{\beta}}{\theta_E} \Rightarrow$
- Lens equation: $\vec{y} = \vec{x} \frac{\vec{x}}{x^2} \Leftrightarrow \vec{y} = \vec{x} \frac{\vec{e}}{x} \Rightarrow$
- Image positions:

$$x_{1,2} = \frac{1}{2} \left(y \pm \sqrt{y^2 + 4} \right)$$

Left: images of a point-like source $_{-0,5}$ *Right*: images of an extended (circular) source $_{-1,5}^{-1}$

Point-like lens: magnification of images

- Gravitational lensing preserves surface brightness, but changes the apparent solid angle of a source
- Magnification of an image ratio between the solid angles of the image and the source, and for a circularly symmetric lens: $\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta}$ In the case of a point lens:
- In the case of a point lens:

$$\theta^2 - \beta \,\theta - \theta_E^2 = 0 \Rightarrow \beta = \theta - \frac{\theta_E^2}{\theta} \wedge d\beta = \left(1 + \frac{\theta_E^2}{\theta^2}\right) d\theta \Rightarrow$$

$$\mu_{1,2} = \left(1 - \left[\frac{\theta_E}{\theta_{1,2}}\right]^4\right)^{-1} \Leftrightarrow \mu_{1,2} = \left(1 - \frac{1}{x_{1,2}^4}\right)^{-1} \Leftrightarrow \mu_{1,2} = \frac{1}{2} \pm \frac{y^2 + 2}{2y\sqrt{y^2 + 4}}$$

- Magnification μ_2 of the image inside the Einstein radius is negative (mirrorinverted): negative parity
- $v = 0 \Rightarrow$ Einstein ring of a point source has infinite magnification
- Total magnification: sum of the absolute values of two image magnifications: $\mu = |\mu_1| + |\mu_2| = \mu_1 - \mu_2 = \frac{y^2 + 2}{\mu_2/\mu^2 + 4} > 1$
- Sum of two image magnifications: $\mu_1 + \mu_2 = 1$

Exam questions

- 1. Lens equation and Einstein radius
- 2. Point-like lenses: lens equation, positions and magnification of images

Literature

Textbook:

- *Gravitational Lensing*: Strong, Weak and Micro, Book Series: Saas-Fee Advanced Courses
 - 1. P. Schneider Introduction to Gravitational Lensing and Cosmology
 - 2. C. S. Kochanek Strong Gravitational Lensing
 - 3. P. Schneider Weak Gravitational Lensing
 - 4. J. Wambsganss Gravitational Microlensing

Exercise 1

Calculate the angular Einstein radius in the case of a lensing galaxy with a mass $M = 10^{12} M_{\odot}$ at a redshift of $z_d = 0.5$ and a source at redshift $z_s = 2.0$. Assume the flat cosmological model with $H_0 = 71$ km/s/Mpc, $\Omega_{\rm M} = 0.27$ and $\Omega_{\Lambda} = 0.73$, and use the Ned Wright's Javascript Cosmology Calculator to calculate the cosmological distances: <u>http://www.astro.ucla.edu/~wright/CosmoCalc.html</u>

Note that it is convenient to use the gravitational constant expressed in the following units: $G \approx 4.302 \times 10^{-3} \frac{\text{pc}}{M_{\odot}} \frac{\text{km}^2}{\text{s}^2}$

Exercise 2

Estimate the mass of the lensing galaxy of Einstein Cross (Q2237+030) from angular separation of its images. Take this separation and the redshifts from CASTLES Gravitational Lens Data Base at: <u>http://www.cfa.harvard.edu/castles/</u>.

Assume the same cosmological model as in previous exercise.

Compare the obtained mass inside Einstein ring with the corresponding estimates given in Table 1 of Wambsganss & Paczynski, 1994, AJ, 108, 1156.

Exercise 3

What is the total magnification in the case of a single point lens, when the source lies on the Einstein radius?

Exercise 4

Consider a point-like lens with Einstein radius of 1" located at coordinate origin, and calculate the images of a point-like background source located at $\vec{\beta} = (0''.3, 0''.3)$.

Note that the position vectors of the source $\vec{\beta} = (\beta_x, \beta_y)$ and images $\vec{\theta} = (\theta_x, \theta_y)$ are always codirectional, and thus they have the same unit vectors: $\vec{e} = \frac{\vec{\theta}}{\theta} = \frac{\vec{\beta}}{\beta} \implies \frac{\theta_{x,y}}{\theta} = \frac{\beta_{x,y}}{\beta}.$

Exercise 5

Consider a point-like lens with Einstein radius of 1" located at coordinate origin, and calculate the images of a circular background source with radius of 0".2, assuming that it is located at the following five different positions along the x-axis: -0".5, -0".21, 0.0, 0".21 and 0".5.

 $D_d = 1254.5 \text{ Mpc}$ $D_s = 1748.1 \text{ Mpc}$ $D_{ds} = (D_{Ms} - D_{Md})/(1 + z_s) = (5244.3 - 1881.7)/(1 + 2.0) \text{ Mpc} = 1120.9 \text{ Mpc}$

$$D = \frac{D_d D_s}{D_{ds}} = 1956.4 \text{ Mpc}$$

Angular Einstein radius: $\theta_E = \sqrt{\frac{4GM}{c^2D}} \approx 1 \times 10^{-5} \, \text{rad} \approx 2''$

Note: 1 rad = $(648000 / \pi)'' \approx 206265''$

 $z_s = 1.69, z_d = 0.04$ Angular separation of the images (size) $\approx 2\theta_F = 1''.78$ $\theta_E = 1".78 / 2 = 0".89 = (0.89 / 206265) \text{ rad} = 4.315 \text{ x } 10^{-6} \text{ rad}$ $D_d = 161.1 \text{ Mpc}$ $D_{\rm s} = 1764.8 \; {\rm Mpc}$ $D_{ds} = (D_{Ms} - D_{Md})/(1 + z_s) = (4747.3 - 167.5)/(1 + 1.69) \text{ Mpc} = 1702.5 \text{ Mpc}$ $D = \frac{D_d D_s}{D_{ds}} = 167 \,\mathrm{Mpc}$ $M = \frac{c^2 D \,\theta_E^2}{AC} = 1.6 \times 10^{10} M_{\odot}$ Table 1 from Wambsganss & Paczynski, 1994, AJ, 108, 1156: $M \approx 1.5 imes 10^{10} M_{\odot}$

When the source lies on the Einstein radius, we have $\beta = \theta_E$, i.e. y = 1, and the total magnification becomes: $\mu = 1.17 + 0.17 = 1.34$

Solution is obtained by Python script "pointl_points.py"

Solution 5 1.0 0.5 y('')0.0 -0.5 -1.0-1.0 -0.5 0.00.5 1.0 -1.0 -0.50.0 0.5 1.0 -1.0 -0.5 0.00.5 1.0 x('')x('')x('')1.0 Point-like lens 0.5 Einstein ring y('')0.0 Circular source $Image_1(+)$ -0.5 $\text{Image}_2(-)$ -1.0Solution is obtained by Python script -1.0 -0.50.0 0.5 1.0 -1.0 -0.50.0 0.5 1.0 x('')x('')"pointl_circs.py"