MASS 2023 Course: Gravitational Lenses

Predrag Jovanović Astronomical Observatory Belgrade

Lecture 07

- 1. Extended lenses:
 - surface mass density
 - convergence
 - circularly symmetric lens
- 2. Deflection (lensing) potential
- 3. Simple lens models:
 - Singular Isothermal Sphere (SIS)
 - Softened Isothermal Sphere
 - Isothermal Ellipsoid
- 4. Exercise

Surface mass density

3D mass density ρ(r) of an extended lens can be projected along the line of sight onto the lens plane to obtain the two-dimensional surface mass density distribution:

$$\Sigma(\vec{\xi}) = \int_0^{D_s} \rho(\vec{r}) dz,$$

where \vec{r} is a three-dimensional vector in space, and $\vec{\xi}$ is a twodimensional vector in the lens plane

• the two-dimensional **deflection angle** is then the sum of the deflections due to all the mass elements in the plane:

$$\vec{\hat{\alpha}}(\vec{\xi}) = \frac{4G}{c^2} \int \frac{(\vec{\xi} - \vec{\xi'})\Sigma(\vec{\xi'})}{|\vec{\xi} - \vec{\xi'}|^2} d^2\xi'$$

• the **critical surface mass density** is given by the lens mass *M* "smeared out" over the area of the Einstein ring:

$$\Sigma_{cr} = \frac{M}{\pi \xi_E^2} = \frac{c^2}{4\pi G} \frac{D_s}{D_d D_{ds}} = 0.35 \,\mathrm{g \, cm^{-2}} \left(\frac{D}{1 \,\mathrm{Gpc}}\right)^{-1}$$

Convergence

• dimensionless surface mass density or convergence *k*:

$$\kappa(\vec{\theta}) := \frac{\Sigma(D_d\vec{\theta})}{\Sigma_{cr}}$$

- a mass distribution which has $\kappa \ge 1$, $_{\infty}^{-11.75}$ i.e. $\Sigma \ge \Sigma_{cr}$ produces multiple images for some source positions
- Σ_{cr} is a characteristic value for the surface mass density which separates "weak" from "strong" lenses

Strong vs weak lensing

Fig. 4. The average scaled surface mass density contours for a source at redshift 2. The thick contours show the κ levels greater or equal to one, and the thin lines for κ less than one (the contours are separated by $\Delta \kappa = 0.25$, first thick contour level is at $\kappa = 1$).

Deflection potential

• scaled deflection angle expressed in terms of convergence:

$$\vec{\hat{\alpha}}(\vec{\xi}) = \frac{4G}{c^2} \int \frac{(\vec{\xi} - \vec{\xi'})\Sigma(\vec{\xi'})}{|\vec{\xi} - \vec{\xi'}|^2} d^2 \xi' \iff \vec{\alpha}(\vec{\theta}) = \frac{1}{\pi} \int_{\mathbb{R}^2} \kappa(\vec{\theta'}) \frac{\vec{\theta} - \vec{\theta'}}{|\vec{\theta} - \vec{\theta'}|^2} d^2 \theta'$$

• deflection angle as a gradient of the <u>deflection potential</u> ψ :

$$\psi(\vec{\theta}) = \frac{1}{\pi} \int_{\mathbb{R}^2} \kappa(\vec{\theta'}) \ln |\vec{\theta} - \vec{\theta'}| d^2 \theta' \wedge \nabla \ln |\vec{\theta}| = \frac{\vec{\theta}}{|\vec{\theta}|^2} \Rightarrow \left[\vec{\alpha} = \vec{\nabla} \psi(\vec{\theta}) \right]$$

lens equation: $\left[\vec{\beta} = \vec{\theta} - \vec{\nabla} \psi(\vec{\theta}) \right]$

• relationship between the deflection and Newtonian potential of the lens:

$$\psi(\vec{\theta}) = \frac{D_{ds}}{D_d D_s} \frac{2}{c^2} \int \Phi(\vec{r}) dz$$

- Poisson equation: $\nabla^2 \Phi = 4\pi G \rho \Rightarrow \nabla^2 \psi = 2\kappa$
- different surface mass distributions ⇒ different deflection potentials ⇒ different extended lens models

Circularly symmetric lens

- for a general mass distribution, the deflection angle is calculated using numerical integration
- analytical expressions could be obtained only for some simple mass distributions, such as spherically symmetric mass distribution (i.e. axially symmetric distribution of the projected mass)
- the deflection angle for axially symmetric lenses: $\vec{\alpha}(\vec{\xi}) = \frac{4GM(|\xi|)}{c^2|\vec{\xi}|^2}\vec{\xi}$, where $M(\xi)$ is the projected mass enclosed by the circle of radius: $\xi = |\vec{\xi}|$
- the same expression for deflection angle as in the case of point-mass lens due to Birkhoff theorem: gravitational force caused by a sphericallysymmetric mass shell vanishes inside of it ⇒ rings of projected axisymmetric mass cause no deflection inside of them
- like in the point-mass case, the lens equation is one-dimensional
- circularly symmetric lenses typically produce either 1 or 3 images, depending on the position of the source

Singular Isothermal Sphere (SIS)

- galaxies are often modeled by SIS since this is the simplest model that best reproduces their observed flat rotation curves
- analogy between stars and particles of an ideal gas in thermal equilibrium where the temperature is related to the one-dimensional velocity dispersion σ_v
- stellar gas is assumed to be **isothermal** across the galaxy: $\sigma_v = const$
- 3D density distribution: $\rho(r) = \frac{\sigma_{\nu}^2}{2\pi G} \frac{1}{r^2}$

• rotational velocity of stars in circular orbits: $v_{rot}^2(r) = \frac{GM(r)}{r} = 2\sigma_v^2 = const$

• surface mass density: $\Sigma(\xi) = \int \rho(r) dz = \frac{\sigma_v^2}{2G} \frac{1}{\xi}$

• deflection angle: $M(\xi) = \int_{0}^{\xi} \Sigma(\xi') 2\pi \xi' d\xi' \Rightarrow \hat{\alpha}(\xi) = 4\pi \frac{\sigma_v^2}{c^2} = 1''.4 \left(\frac{\sigma_v}{220 \,\mathrm{km \, s^{-1}}}\right)^2$

• Einstein (critical) radius: $\theta_E = 4\pi \frac{\sigma_v^2}{c^2} \frac{D_{ds}}{D_s} = \hat{\alpha} \frac{D_{ds}}{D_s} = \alpha$

SIS lens model

 $\alpha = \theta_E \Rightarrow \vec{\alpha} = \theta_E \frac{\vec{\theta}}{\theta} \Rightarrow \text{ the lens equation in the case of SIS lens:}$ $\vec{\beta} = \vec{\theta} - \theta_E \frac{\vec{\theta}}{\theta} \middle/ \cdot \vec{\theta} \quad \Leftrightarrow \quad \vec{y} = \vec{x} - \frac{\vec{x}}{x} \middle/ \cdot \vec{x}$

(where the second form employs the position angles of the lens and source normalized to θ_E) \Rightarrow the lens equation has two solutions:

$$\theta_{\pm} = \beta \pm \theta_E \Leftrightarrow x = y \pm 1$$

• for $\beta < \theta_E \Leftrightarrow y < 1$ there are two images on the opposite sides of the lens center, separated by $\Delta \theta = 2\theta_E$:

1.
$$\theta_{+} = \beta + \theta_{E} \iff x_{+} = y + 1$$

2. $\theta_{-} = \beta - \theta_{E} \iff x_{-} = y - 1$

- for $\beta > \theta_E \iff y > 1$ only one image occurs at: $x_+ = y + 1$
- multiple images only if the source lies inside the Einstein ring: $\beta < \theta_E$

Deflection potentials of simple lens models

- Point-like: $\Sigma(\vec{\xi}) = M\delta_D(\vec{\xi}) \Rightarrow \psi(\vec{\theta}) = \theta_E^2 \ln |\vec{\theta}|$
- Singular Isothermal Sphere (SIS): $\psi(\vec{\theta}) = b \cdot |\vec{\theta}|, \quad b = 4\pi \left(\frac{\sigma}{c}\right)^2 \frac{D_{ds}}{D}$
- *b* critical radius ($b = \theta_E$)
- Softened Isothermal Sphere:
- generalization of SIS model which is more realistic for (spiral) galaxies
- isothermal sphere with **finite core** of radius ξ_c

• deflection angle is modified to: $\hat{\alpha}(\xi) = 4\pi \frac{\sigma_v^2}{c^2} \frac{\xi}{\sqrt{\xi^2 + \xi_c^2}} \Rightarrow \psi(\theta) = b \cdot \sqrt{\theta^2 + \theta_c^2}$

Lens Model	$\psi(heta)$	$\alpha(\theta)$
Point mass	$\frac{D_{\rm ds}}{D_{\rm s}} \frac{4GM}{D_{\rm d}c^2} \ln \theta $	$\frac{D_{\rm ds}}{D_{\rm s}} \frac{4GM}{c^2 D_{\rm d} \theta }$
Singular isothermal sphere	$rac{D_{ m ds}}{D_{ m s}}rac{4\pi\sigma^2}{c^2}\left heta ight $	$\frac{D_{\rm ds}}{D_{\rm s}} \frac{4\pi\sigma^2}{c^2}$
Softened isothermal sphere	$\frac{D_{\rm ds}}{D_{\rm s}} \frac{4\pi\sigma^2}{c^2} \left(\theta_{\rm c}^2 + \theta^2\right)^{1/2}$	$\frac{D_{\rm ds}}{D_{\rm s}} \frac{4\pi\sigma^2}{c^2} \frac{\theta}{\left(\theta_{\rm c}^2 + \theta^2\right)^{1/2}}$

Isothermal Ellipsoid

- describes an elliptical galaxy lens
- a straightforward generalization of the isothermal sphere with finite core: $\Sigma(\theta_1, \theta_2) = \frac{\Sigma_0}{\left[\theta_c^2 + (1 - \epsilon)\theta_1^2 + (1 + \epsilon)\theta_2^2\right]^{1/2}},$

where θ_1 , θ_2 are orthogonal coordinates along the major and minor axes of the lens measured from the center

• the potential $\psi(\theta_1, \theta_2)$ corresponding to above density distribution is somewhat complicated, and instead of the elliptical density model, it is simpler and often sufficient to model a galaxy by means of an elliptical effective lensing potential:

$$\psi(\theta_1, \theta_2) = \frac{D_{\rm ds}}{D_{\rm s}} 4\pi \frac{\sigma_v^2}{c^2} \left[\theta_{\rm c}^2 + (1-\epsilon)\theta_1^2 + (1+\epsilon)\theta_2^2 \right]^{1/2} ,$$

where ε measures the ellipticity

Mass Models for Lensing

Model	N_r	Density $\rho(r)$	Surface Density $\kappa(r)$
Point mass	0	$\delta(\mathbf{x})$	$\delta(\mathbf{x})$
Power law or α -models	2	$\left(s^2+r^2 ight)^{(lpha-3)/2}$	$\left(s^{2}+r^{2} ight)^{(lpha-2)/2}$
Isothermal $(\alpha = 1)$	1	$(s^2 + r^2)^{-1}$	$\left(s^{2}+r^{2} ight)^{-1/2}$
lpha=-1	1	$(s^2 + r^2)^{-2}$	$\left(s^{2}+r^{2} ight)^{-3/2}$
Pseudo-Jaffe	2	$\left(s^{2}+r^{2} ight)^{-1}\left(a^{2}+r^{2} ight)^{-1}$	$(s^2 + r^2)^{-1/2} - (a^2 + r^2)^{-1/2}$
King (approximate)	1		$2.12 \left(0.75 r_s^2 + r^2 ight)^{-1/2}$
			$-1.75 \left(2.99 r_s^2+r^2 ight)^{-1/2}$
de Vaucouleurs	1		$\exp\left[-7.67 (r/R_e)^{1/4} ight]$
Hernquist	1	$r^{-1} \left(r_s + r ight)^{-3}$	see eq. (47)
NFW	1	$r^{-1} \left(r_s + r ight)^{-2}$	see eq. (53)
Cuspy NFW	2	$r^{-\gamma} \left(r_s + r ight)^{\gamma - 3}$	see eq. (57)
Cusp	3	$r^{-\gamma}\left(r_s^2+r^2 ight)^{(\gamma-n)/2}$	see eq. (64)
Nuker	4	•••	see eq. (71)
Exponential disk	1		$\exp[-r/R_d]$
Kuzmin disk	1	•••	$\left(r_s^2+r^2 ight)^{-3/2}$

Exam questions

- 1. Extended lenses: surface mass density and convergence
- 2. Deflection potential and isothermal lens models

Literature

Textbook:

- *Gravitational Lensing*: Strong, Weak and Micro, Book Series: Saas-Fee Advanced Courses
 - 1. P. Schneider Introduction to Gravitational Lensing and Cosmology
 - 2. C. S. Kochanek Strong Gravitational Lensing
 - 3. P. Schneider Weak Gravitational Lensing
 - 4. J. Wambsganss Gravitational Microlensing

Exercise 1

Consider a SIS gravitational lens with Einstein radius of 1" located at coordinate origin, and calculate the images of a circular background source with radius of 0".2, assuming that it is located at the following three positions: inside the Einstein ring at (0".3, 0".3), exactly at Einstein ring at (0".71, 0".71) and outside the Einstein ring at (1", 1"). Discuss the obtained results.

Solution 1

Solution is obtained by Python script "sisl_circs.py"

Image₂