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Abstract

There are now 10 firm time delay measurements in gravitational lenses. The physics of time
delays is well understood, and the only important variable for interpreting the time delays
to determineH0 is the mean surface mass density〈κ〉 (in units of the critical density for
gravitational lensing) of the lens galaxy at the radius of the lensed images. More centrally
concentrated mass distributions with lower〈κ〉 predict higher Hubble constants, withH0 ∝

1− 〈κ〉 to lowest order. While we cannot determine〈κ〉 directly given the available data
on the current time delay lenses, we findH0 = 48± 3 km s−1 Mpc−1 for the isothermal
(flat rotation curve) models, which are our best present estimate for the mass distributions
of the lens galaxies. Only if we eliminate the dark matter halo of the lenses and use a
constant mass-to-light ratio (M/L) model to findH0 = 71±3 km s−1 Mpc−1 is the result
consistent with local estimates. Measurements of time delays in better-constrained systems
or observations to obtain new constraints on the current systems provide a clear path to
eliminating the〈κ〉 degeneracy and making estimates ofH0 with smaller uncertainties than
are possible locally. Independent of the value ofH0, the time delay lenses provide a new and
unique probe of the dark matter distributions of galaxies and clusters because they measure
the total (light+ dark) matter surface density.

1.1 Introduction
Fifteen years prior to their discovery in 1979, Refsdal (1964) outlined how gravita-

tionally lensed quasars might be used to determine the Hubble constant. Astronomers have
spent the quarter century since their discovery working outthe difficult details not consid-
ered in Refsdal’s seminal papers.

The difficulties encountered fall into two broad categories— measurement and modeling.
Time delays can be hard to measure if the fluxes of the images donot vary, or if the images
are faint, or if they lie very close to each other. Modeling gravitational potentials with a small
number of constraints is likewise difficult, either becausethe lens geometry is complex or
because the data poorly constrain the most important aspects of the gravitational potential.
We will argue that these difficulties are surmountable, bothin principle and in practice, and
that an effort considerably smaller than that of theHST Hubble Constant Key Project will
yield a considerably smaller uncertainty in the Hubble constant,H0.

While the number of systems with measured time delays is small, their interpretation im-
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plies a value forH0, which, given our current understanding of the dark matter distributions
of galaxies, is formally inconsistent with that obtained using Cepheids. The Key Project
value ofH0 = 72±8 km s−1 Mpc−1 (Freedman et al. 2001) is consistent with the lens data
only if the lens galaxies have significantly less dark matterthan is expected theoretically or
has been measured for other early-type galaxies. While it ispremature to argue for replacing
the local estimates, we hope to persuade the astronomical community that the time delay
result deserves both careful attention and further study.

Interpreting time delays requires a model for the gravitational potential of the lens, and
in most cases the uncertainties in the model dominate the uncertainty in H0. Thus, the
main focus of this review will be to explain the dependence oftime delays on gravitational
potentials. We start in §1.2 by introducing the time delay method and illustrating the physics
of time delays with a series of simple models. In §1.3 we review a general mathematical
theory of time delays to show that, for most lenses, the only important parameter of the
model is the mean surface density of the lens at the radius of the images. In §1.4 we discuss
the effects of the environment of the lens on time delays. We review the data on the time
delay lenses in §1.5 and their implications for the Hubble constant and dark matter in early-
type galaxies in §1.6. The present time delay lenses have a degeneracy betweenH0 and
the amount of dark matter, so in §1.7 we outline several approaches that can eliminate the
degeneracy. Finally, in §1.8 we discuss the future of time delays. Unless otherwise stated,
we assume a flat,Ωm = 0.3, ΩΛ = 0.7 cosmological model.

1.2 Time Delay Basics
The observations of gravitationally lensed quasars are best understood in light of

Fermat’s principle (e.g., Blandford & Narayan 1986). Intervening mass between a source
and an observer introduces an effective index of refraction, thereby increasing the light-
travel time. The competition between this Shapiro delay from the gravitational field and the
geometric delay due to bending the ray paths leads to the formation of multiple images at the
stationary points (minima, maxima, and saddle points) of the travel time (for more complete
reviews, see Narayan & Bartelmann 1999 or Schneider, Ehlers, & Falco 1992).

As with glass optics, there is a thin-lens approximation that applies when the optics are
small compared to the distances to the source and the observer. In this approximation, we
need only the effective potential,ψ(~x) = (2/c2)(Dls/Ds)

∫

dzφ, found by integrating the 3D
potentialφ along the line of sight. The light-travel time is

τ (~x) =

[

1+ zl

c

][

DlDs

Dls

][

1
2

(

~x − ~β
)2

−ψ (~x)

]

, (1.1)

where~x = (x,y) = R(cosθ,sinθ) and~β are the angular positions of the image and the source,
ψ(~x) is the effective potential, (~x − ~β)2/2 is the geometric delay in the small-angle approx-
imation, zl is the lens redshift, andDl , Ds, andDls are angular-diameter distances to the
lens, to the source, and from the lens to the source, respectively. The only dimensioned
quantity in the travel time is a factor ofH−1

0 ≃ 10h−1 Gyr arising from theH−1
0 scaling of the

angular-diameter distances.
We observe the images at the extrema of the time delay function, which we find by setting

the gradients with respect to the image positions equal to zero, ~∇xτ = 0, and finding all the
stationary points (~xA, ~xB, · · ·) associated with a given source position~β. The local magnifica-
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Fig. 1.1. Schematic diagram of a two-image time delay lens. The lens lies at the origin, with
two images A and B at radiiRA andRB from the lens center. The images define an annulus of
average radius〈R〉 = (RA + RB)/2 and width∆R = RA − RB, and the images subtend an angle
∆θAB relative to the lens center. For a circular lens∆θAB = 180◦ by symmetry.

tion of an image is determined by the magnification tensorMi j, whose inverse is determined
by the second derivatives of the time delay function,

M−1
i j = ~∇x

~∇xτ (~x) =

(

1−κ−γ cos2θγ γ sin2θγ

γ sin2θγ 1−κ+γ cos2θγ

)

, (1.2)

where the convergenceκ = Σ/Σc is the local surface density in units of the critical surface
densityΣc = c2Ds/4πGDlDls, andγ andθγ define the local shear field and its orientation.
The determinant of the magnification tensor is the net magnification of the image, but it is a
signed quantity depending on whether the image has positive(maxima, minima) or negative
(saddle points) parity.

3



C. S. Kochanek and P. L. Schechter

A simple but surprisingly realistic starting point for modeling lens potentials is the singu-
lar isothermal sphere (the SIS model) in which the lens potential is simply

ψ(~x) = bR, where b = 4π
Dls

Ds

σ2

c2
= 1.′′45

(

σ

225km s−1

)2 Dls

Ds
(1.3)

is a deflection scale determined by geometry andσ is the 1D velocity dispersion of the lens
galaxy. For|~β| < b, the SIS lens produces two colinear images at radiiRA = |~β| + b and
RB = b − |~β| on opposite sides of the lens galaxy (as in Fig. 1.1 but with∆θAB = 180◦).∗ The
A image is a minimum of the time delay and leads the saddle point, B, with a time delay
difference of

∆tSIS = τB − τA =
1
2

[

1+ zl

c

][

DlDs

Dls

]

(R2
A − R2

B). (1.4)

Typical time delay differences of months or years are the consequence of multiplying the
∼ 10h−1 Gyr total propagation times by the square of a very small angle (b ≈ 3× 10−6

radians so,R2
A ≈ 10−11). The SIS model suggests that lens time delay measurements reduce

the determination of the Hubble constant to a problem of differential astrometry. This is
almost correct, but we have made two idealizations in using the SIS model.

The first idealization was to ignore deviations of the radial(monopole) density profile
from that of an SIS with densityρ∝ r−2, surface densityΣ ∝ R−1, and a flat rotation curve.
The SIS is a special case of a power-law monopole with lens potential

ψ(~x) =
b2

(3− η)

(

R
b

)3−η

, (1.5)

corresponding to a (3D) density distribution with densityρ∝ r−η, surface densityΣ∝ R1−η,
and rotation curveυc ∝ r(2−η)/2. Forη = 2 we recover the SIS model, and the normalization is
chosen so that the scaleb is always the Einstein ring radius. Models with smaller (larger)η
have less (more) centrally concentrated mass distributions and have rising (falling) rotation
curves. The limitη→ 3 approaches the potential of a point mass. By adjusting the scaleb
and the source position|~β|, we can fit the observed positions of two images at radiiRA andRB

on opposite sides (∆θAB = 180◦) of the lens for any value ofη.† The expression for the time
delay difference can be well approximated by (Witt, Mao, & Keeton 2000; Kochanek 2002)

∆t(η) = τB − τA ≃ (η − 1)∆tSIS

[

1−
(2− η)2

12

(

∆R
〈R〉

)2

· · ·

]

, (1.6)

where〈R〉 = (RA + RB)/2≃ b and∆R = RA − RB (see Fig. 1.1). While the expansion assumes
∆R/〈R〉 (or |~β|) is small, we can usually ignore the higher-order terms. There are two
important lessons from this model.

∗ The deflections produced by the SIS lens are constant,|~x− ~β| = b, so the total image separation is always 2b. The
outer image is brighter than the inner image, with signed magnificationsM−1

A = 1− b/RA > 0 (a positive parity
minimum) andM−1

B = 1−b/RB < 0 (a negative parity saddle point). The model parameters,b = (RA +RB)/2 =〈R〉

and|~β| = (RA − RB)/2 =∆R/2, can be determined uniquely from the image positions.
† In theory we have one additional constraint because the image flux ratio measures the magnification ratio,

fA/ fB = |MA|/|MB|, and the magnification ratio depends onη. Unfortunately, the systematic errors created by
milli- and microlensing make it difficult to use flux ratios asmodel constraints (see §1.5).
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(1) Image astrometry of simple two-image and four-image lenses generally cannot constrain the
radial mass distribution of the lens.

(2) More centrally concentrated mass distributions (larger η) predict longer time delays, result-
ing in a larger Hubble constant for a given time delay measurement.

These problems, which we will address from a different perspective in §1.3, are the cause of
the uncertainties in estimates ofH0 from time delays.

The second idealization was to ignore deviations from circular symmetry due to either the
ellipticity of the lens galaxy or the local tidal gravity field from nearby objects. A very nice
analytic example of a lens with angular structure is a singular isothermal model witharbi-
trary angular structure, where the effective potential isψ = bRF(θ), andF(θ) is an arbitrary
function. The model family includes the most common lens model, the singular isothermal
ellipsoid (SIE). The time delays for this model family are simply ∆tSIS, independent of the
angular structure of the lens (Witt et al. 2000)! This result, while attractive, does not hold in
general, and we will require the results of §1.3 to understand the effects of angular structure
in the potential.

1.3 Understanding Time Delays: A General Theory
The need to model the gravitational potential of the lens is the aspect of interpreting

time delays that creates the greatest suspicion. The most extreme view is that it renders the
project “hopeless” because we will never be able to guarantee that the models encompass the
degrees of freedom needed to capture all the systematic uncertainties. In order to address
these fears we must show that we understand the specific properties of the gravitational
potential determining time delays and then ensure that our parameterized models include
these degrees of freedom.

The examples we considered in §1.2 illustrate the basic physics of time delays, but an
extensive catalog of (non)parametric models demonstrating the same properties may not be
convincing to the skeptic. We will instead show, using standard mathematical expansions
of the potential, which properties of the lens galaxy are required to understand time delays
with accuracies of a few percent. While we can understand theresults of all models for the
time delays of gravitational lenses based on this simple theory, full numerical models should
probably be used for most detailed, quantitative analyses.Fortunately, there are publically
available programs for both the parametric and nonparametric approaches.∗ Our analysis
uses the geometry of the schematic lens shown in Figure 1.1. The two images define an
annulus bounded by their radii,RA andRB, and with an interior region forR < RB and an
exterior region forR > RA.

The key to understanding time delays comes from Gorenstein,Falco, & Shapiro (1988;
see also Saha 2000), who showed that the time delay of a circular lens depends only on
the image positions and thesurface density κ(R) in the annulus between the images. The
mass of the interior region is implicit in the image positions and accurately determined by
the astrometry. From Gauss’ law, we know that the radial distribution of the mass in the
interior region and the amount or distribution of mass in theexterior region is irrelevant.
A useful approximation is to assume that the surface densityin the annulus can belocally

∗ Thegravlens andlensmodel (Keeton 2003, cfa-www.harvard.edu/∼castles) packages include a very broad range
of parametric models for the mass distributions of lenses, and thePixelLens package (Williams & Saha 2000,
ankh-morpork.maths.qmw.ac.uk/∼saha/astron/lens/pix/) implements a nonparametric approach.
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approximated by a power lawκ∝ R1−η and that the mean surface density in the annulus is
〈κ〉 = 〈Σ〉/Σc. The time delay between the images is (Kochanek 2002)

∆t = 2∆tSIS

[

1− 〈κ〉−
1− η〈κ〉

12

(

∆R
〈R〉

)2

+ O

(

(

∆R
〈R〉

)4
)]

. (1.7)

Thus, the time delay is largely determined by the average density 〈κ〉, with only modest
corrections from the local shape of the surface density distribution even when∆R/〈R〉 ≃
1. For example, the second-order expansion is exact for an SIS lens (〈κ〉 = 1/2, η = 2)
and reproduces the time delay of a point mass lens (〈κ〉 = 0) to better than 1% even when
∆R/〈R〉 = 1. This local model also explains the time delay scalings ofthe global power-law
models we discussed in §1.2. Aρ∝ r−η global power law has surface density〈κ〉 = (3−η)/2
near the Einstein ring, so the leading term of the time delay is ∆t = 2∆tSIS(1− 〈κ〉) = (η −
1)∆tSIS, just as in Equation (1.6).

• The time delay is not determined by the global structure of the radial density profile but
rather by the surface density near the Einstein ring.

Gorenstein et al. (1988) considered only circular lenses, but a multipole expansion allows
us to understand the role of angular structure (Kochanek 2002). An estimate to the same
order as in Equation (1.7) requires only the quadrupole moments of the regions interior
and exterior to the annulus, provided the strengths of the higher-order multipoles of the
potential have the same order of magnitude as for an ellipsoidal density distribution.∗ This
approximation can fail for the lenses in clusters (see §1.4). The complete expansion for
∆t when the two quadrupole moments have independent amplitudes and orientations is not
very informative. However, the leading term of the expansion when the two quadrupole
moments are aligned illustrates the role of angular structure. Given an exterior quadrupole
(i.e., an external shear) of amplitudeγext and an interior quadrupole of amplitudeγint sharing
a common axisθγ , the quadrupole potential is

ψ2 =
1
2

(

γextR
2 +γint

〈R〉4

R2

)

cos2(θ − θγ) (1.8)

if we define the amplitudes at radius〈R〉. For images at positionsRA(cosθA,sinθA) and
RB(cosθB,sinθB) relative to the lens galaxy (see Fig. 1.1), the leading termof the time delay
is

∆t ≃ 2∆tSIS(1− 〈κ〉)
sin2(∆θAB/2)

1− 4 fint cos2(∆θAB/2)
, (1.9)

where∆θAB = θA − θB and fint = γint/(γext + γint) is the fraction of the quadrupole due to
the interior quadrupole momentγint . We need not worry about the possibility of a singular
denominator — successful global models of the lens do not allow such configurations.
∗ If the quadrupole potential,ψ2 ∝ cos2θ, has dimensionless amplitudeǫ2, then it produces ray deflections of

orderO(ǫ2b) at the Einstein ring of the lens. In a four-image lens the quadrupole deflections are comparable
to the thickness of the annulus, soǫ2 ≃ ∆R/〈R〉. In a two-image lens they are smaller than the thickness of
the annulus, soǫ2 <∼ ∆R/〈R〉. For an ellipsoidal density distribution, the cos(2mθ) multipole amplitude scales
asǫ2m ∼ ǫm

2
<∼ (∆R/〈R〉)m. This allows us to ignore the quadrupole density distribution in the annulus and all

higher-order multipoles. It is important to remember that potentials are much rounder than surface densities
[with relative amplitudes for a cos(mθ) multipole of roughlym−2:m−1:1 for potentials:deflections:densities], so
the multipoles relevant to time delays converge rapidly even for very flat surface density distributions.
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A two-image lens has too few astrometric constraints to fully constrain a model with
independent, misaligned internal and external quadrupoles. Fortunately, when the lensed
images lie on opposite sides of the lens galaxy (∆θAB ≃ π + δ, |δ| ≪ 1), the time delay
becomes insensitive to the quadrupole structure. Providedthe angular deflections are smaller
than the radial deflections (|δ|〈R〉 <∼ ∆R), the leading term of the time delay reduces to the
result for a circular lens,∆t ≃ 2∆tSIS(1− 〈κ〉). There is, however, one limiting case to
remember. If the images and the lens are colinear, as in a spherical lens, the component of
the shear aligned with the separation vector acts like a contribution to the convergence. In
most lenses this would be a modest additional uncertainty — in the typical lens these shears
must be small, the sign of the effect should be nearly random,and it is only a true degeneracy
in the limit that everything is colinear.

A four-image lens has more astrometric constraints and can constrain a model with in-
dependent, misaligned internal and external quadrupoles.The quadrupole moments of the
observed lenses are dominated by external shear, withfint <∼ 1/4 unless there is more than
one lens galaxy inside the Einstein ring. The ability of the astrometry to constrainfint is
important because the delays depend strongly onfint when the images do not lie on opposite
sides of the galaxy. If external shears dominate,fint ≃ 0 and the leading term of the delay
becomes∆t ≃ 2∆tSIS(1− 〈κ〉)sin2

∆θAB/2. If the model is isothermal, like theψ = rF(θ)
models we considered in §1.2, thenfint = 1/4 and we again find that the delay is indepen-
dent of the angle, with∆t ≃ 2∆tSIS(1− 〈κ〉). The time delay ratios in a four-image lens are
largely determined by the angular structure and provide a check of the potential model.

In summary, if we want to understand time delays to an accuracy competitive with studies
of the local distance scale (5%–10%), the only important variable is the surface density〈κ〉
of the lens in the annulus between the images. When models based on the same data for the
time delay and the image positions predict different valuesfor H0, the differences can always
be understood as the consequence of different choices for〈κ〉. In parametric models〈κ〉 is
adjusted by changing the central concentration of the lens (i.e., likeη in the global power-law
models), and in the nonparametric models of Williams & Saha (2000) it is adjusted directly.
The expansion models of Zhao & Qin (2003a,b) mix aspects of both approaches.

1.4 Lenses Within Clusters
Most galaxies are not isolated, and many early-type lens galaxies are members of

groups or clusters, so we need to consider the effects of the local environment on the time
delays. Weak perturbations are easily understood since they will simply be additional con-
tributions to the surface density (〈κ〉) and the external shear/quadrupole (γext) we discussed
in §1.3. In this section we focus on the consequences of largeperturbations.

As a first approximation we can assume that a nearby cluster (or galaxy) can be modeled
by an SIS potential,Ψc(~x) = B|~x − ~xc|, whereB is the Einstein radius of the cluster and
~xc = RC(cosθc,sinθc) is the position of the cluster relative to the primary lens.We can
understand its effects by expanding the potential as a series in R/Rc, dropping constant
and linear terms that have no observable consequences, to find that

Ψc ≃
1
4

B
Rc

R2 −
1
4

B
Rc

R2cos2(θ − θc) + O

(

B
R2

c
R3

)

. (1.10)

The first term has the form (1/2)κcR2, which is the potential of a uniform sheet whose
surface densityκc = B/2Rc is that of the cluster at the lens center. The second term has the
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form (1/2)γcR2cos2(θ − θc), which is the (external) tidal shearγc = B/2Rc that would be
produced by putting all the cluster mass inside a ring of radiusRc at the cluster center. All
realistic lens models need to incorporate a tidal shear termdue to objects near the lens or
along the line of sight (Keeton, Kochanek, & Seljak 1997), but as we discussed in §1.3 the
shear does not lead to significant ambiguities in the time delay estimates. Usually the local
shear cannot be associated with a particular object unless it is quite strong (γc ≈ 0.1).∗

The problems with nearby objects arise when the convergenceκc becomes large because
of a global degeneracy known as themass-sheet degeneracy (Falco, Gorenstein, & Shapiro
1985). If we have a model predicting a time delay∆t0 and then add a sheet of constant
surface densityκc, then the time delay is changed to (1−κc)∆t0 without changing the image
positions, flux ratios, or time delay ratios. Its effects canbe understood from §1.3 as a
contribution to the annular surface density with〈κ〉 = κc andη = 1. The parameters of the
lens, in particular the mass scaleb, are also rescaled by factors of 1−κc, so the degeneracy
can be broken if there is an independent mass estimate for either the cluster or the galaxy.∗

When the convergence is due to an object like a cluster, thereis a strong correlation between
the convergenceκc and the shearγc that is controlled by the density distribution of the cluster
(for our isothermal modelκc = γc). In most circumstances, neglecting the extra surface
density coming from nearby objects (galaxies, groups, clusters) leads to an overestimate of
the Hubble constant because these objects all haveκc > 0.

If the cluster is sufficiently close, then we cannot ignore the higher-order perturbations
in the expansion of Equation (1.10). They are quantitatively important when they produce
deflections at the Einstein ring radiusb of the primary lens,B(b/Rc)2, that are larger than
the astrometric uncertainties. Because these uncertainties are small, the higher-order terms
quickly become important. If they are important but ignoredin the models, the results can
be very misleading.

1.5 Observing Time Delays and Time Delay Lenses
The first time delay measurement, for the gravitational lensQ0957+561, was re-

ported in 1984 (Florentin-Nielsen 1984). Unfortunately, acontroversy then developed be-
tween a short delay (≃ 1.1 years, Schild & Cholfin 1986; Vanderriest et al. 1989) and a
long delay (≃ 1.5 years, Press, Rybicki, & Hewitt 1992a,b), which was finallysettled in
favor of the short delay only after 5 more years of effort (Kundić et al. 1997; also Schild &
Thomson 1997 and Haarsma et al. 1999). Factors contributingto the intervening difficulties
included the small amplitude of the variations, systematiceffects, which, with hindsight, ap-
pear to be due to microlensing and scheduling difficulties (both technical and sociological).

While the long-running controversy over Q0957+561 led to poor publicity for the mea-

∗ There is a small random component ofκ contributed by material along the line of sight (Barkana 1996). This
introduces small uncertainties in theH0 estimates for individual lenses (an rms convergence of 0.01− 0.05,
depending on the source redshift), but is an unimportant source of uncertainty in estimates from ensembles of
lenses because it is a random variable that averages to zero.

∗ For the cluster this can be done using weak lensing (e.g., Fischer et al. 1997 in Q0957+561), cluster galaxy
velocity dispersions (e.g., Angonin-Willaime, Soucail, &Vanderriest 1994 for Q0957+561, Hjorth et al. 2002
for RXJ0911+0551) or X-ray temperatures/luminosities (e.g., Morgan et al. 2001 for RXJ0911+0551 or Chartas
et al. 2002 for Q0957+561). For the lens galaxy this can be done with stellar dynamics (Romanowsky &
Kochanek 1999 for Q0957+561 and PG1115+080, Treu & Koopmans2002b for PG1115+080). The accuracy
of these methods is uncertain at present because each suffers from its own systematic uncertainties. When the
lens is in the outskirts of a cluster, as in RXJ0911+0551, it is probably reasonable to assume thatκc ≤ γc, as
most mass distributions are more centrally concentrated than isothermal.
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Table 1.1.Time Delay Measurements

System Nim ∆t (days) Astrometry Model Ref.

HE1104–1805 2 161±7 + “simple” 1
PG1115+080 4 25±2 + “simple” 2
SBS1520+530 2 130±3 + “simple” 3
B1600+434 2 51±2 +/− “simple” 4
HE2149–2745 2 103±12 + “simple” 5

RXJ0911+0551 4 146±4 + cluster/satellite 6
Q0957+561 2 417±3 + cluster 7
B1608+656 4 77±2 +/− satellite 8

B0218+357 2 10.5±0.2 − “simple” 9
PKS1830–211 2 26±4 − “simple” 10

B1422+231 4 (8±3) + “simple” 11

Nim is the number of images.∆t is the longest of the measured delays and its 1σ
error; delays in parenthesis require further confirmation.The “Astrometry”
column indicates the quality of the astrometric data for thesystem:+ (good),+/−
(some problems),− (serious problems). The “Model” column indicates the type of
model needed to interpret the delays. “Simple” lenses can bemodeled as a single
primary lens galaxy in a perturbing tidal field. More complexmodels are needed if
there is a satellite galaxy inside the Einstein ring (“satellite”) of the primary lens
galaxy, or if the primary lens belongs to a cluster. References: (1) Ofek & Maoz
2003, also see Gil-Merino, Wistozki, & Wambsganss 2002, Pelt, Refsdal, &
Stabell 2002, and Schechter et al. 2002; (2) Barkana 1997, based on Schechter et
al. 1997; (3) Burud et al. 2002b; (4) Burud et al. 2000, also Koopmans et al. 2000;
(5) Burud et al. 2002a; (6) Hjorth et al. 2002; (7) Kundić et al. 1997, also Schild
& Thomson 1997 and Haarsma et al. 1999; (8) Fassnacht et al. 2002; (9) Biggs et
al. 1999, also Cohen et al. 2000; (10) Lovell et al. 1998; (11)Patnaik &
Narasimha 2001.

surement of time delays, it allowed the community to come to an understanding of the sys-
tematic problems in measuring time delays, and to develop a broad range of methods for
reliably determining time delays from typical data. Only the sociological problem of con-
ducting large monitoring projects remains as an impedimentto the measurement of time
delays in large numbers. Even these are slowly being overcome, with the result that the last
five years have seen the publication of time delays in 11 systems (see Table 1.1).

The basic procedures for measuring a time delay are simple. Amonitoring campaign
must produce light curves for the individual lensed images that are well sampled compared
to the time delays. During this period, the source quasar in the lens must have measurable
brightness fluctuations on time scales shorter than the monitoring period. The resulting light
curves are cross correlated by one or more methods to measurethe delays and their uncer-
tainties (e.g., Press et al. 1992a,b; Beskin & Oknyanskij 1995; Pelt et al. 1996; references
in Table 1.1). Care must be taken because there can be sourcesof uncorrelated variabil-
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Fig. 1.2. VLA monitoring data for the four-image lens B1608+656. The left panel shows
(from top to bottom) the normalized light curves for the B (filled squares), A (open di-
amonds), C (filled triangles) and D (open circles) images as afunction of the mean Ju-
lian day. The right panel shows the composite light curve forthe first monitoring season
after cross correlating the light curves to determine the time delays (∆tAB = 31.5± 1.5,
∆tCB = 36.0± 1.5 and∆tDB = 77.0± 1.5 days) and the flux ratios. (From Fassnacht et
al. 2002.)

ity between the images due to systematic errors in the photometry and real effects such as
microlensing of the individual images (e.g., Koopmans et al. 2000; Burud et al. 2002b;
Schechter et al. 2003). Figure 1.2 shows an example, the beautiful light curves from the
radio lens B1608+656 by Fassnacht et al. (2002), where the variations of all four lensed
images have been traced for over three years. One of the 11 systems, B1422+231, is lim-
ited by systematic uncertainties in the delay measurements. The brand new time delay for
HE1104–1805 (Ofek & Maoz 2003) is probably accurate, but hasyet to be interpreted in
detail.

We want to have uncertainties in the time delay measurementsthat are unimportant
for the estimates ofH0. For the present, uncertainties of order 3%–5% are adequate(so
improved delays are still needed for PG1115+080, HE2149–2745, and PKS1830–211).
In a four-image lens we can measure three independent time delays, and the dimension-
less ratios of these delays provide additional constraintson the lens models (see §1.3).
These ratios are well measured in B1608+656 (Fassnacht et al. 2002), poorly measured
in PG1115+080 (Barkana 1997; Schechter et al. 1997; Chartas2003) and unmeasured in
either RXJ0911+0551 or B1422+231. Using the time delay lenses as very precise probes
of H0, dark matter and cosmology will eventually require still smaller delay uncertainties
(∼ 1%). Once a delay is known to 5%, it is relatively easy to reduce the uncertainties further
because we can accurately predict when flux variations will appear in the other images and
need to be monitored.

The expression for the time delay in an SIS lens (Eqn. 1.4) reveals the other data that are
necessary to interpret time delays. First, the source and lens redshifts are needed to compute
the distance factors that set the scale of the time delays. Fortunately, we know both redshifts
for all 11 systems in Table 1.1. The dependence of the angular-diameter distances on the
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cosmological model is unimportant until our total uncertainties approach 5% (see §1.8).
Second, we require accurate relative positions for the images and the lens galaxy. These
uncertainties are always dominated by the position of the lens galaxy relative to the images.
For most of the lenses in Table 1.1, observations with radio interferometers (VLA, Merlin,
VLBA) and HST have measured the relative positions of the images and lenses to accuracies
<∼ 0.′′005. Sufficiently deepHST images can obtain the necessary data for almost any lens,
but dust in the lens galaxy (as seen in B1600+434 and B1608+656) can limit the accuracy of
the measurement even in a very deep image. For B0218+357 and PKS1830–211, however,
the position of the lens galaxy relative to the images is not known to sufficient precision or
is disputed (see Léhar et al. 2000; Courbin et al. 2002; Winn et al. 2002).

In practice, we fit models of the gravitational potential constrained by the available data
on the image and lens positions, the relative image fluxes, and the relative time delays.
When imposing these constraints, it is important to realizethat lens galaxies are not per-
fectly smooth. They contain both low-mass satellites and stars that perturb the gravitational
potential. The time delays themselves are completely unaffected by these substructures.
However, as we take derivatives of the potential to determine the ray deflections or the
magnification, the sensitivity to substructures in the lensgalaxy grows. Models of sub-
structure in cold dark matter (CDM) halos predict that the substructure produces random
perturbations of approximately 0.′′001 in the image positions (see Metcalf & Madau 2001;
Dalal & Kochanek 2002). We should not impose tighter astrometric constraints than this
limit. A more serious problem is that substructure, whethersatellites (“millilensing”) or
stars (“microlensing”), significantly affect image fluxes with amplitudes that depend on the
image magnification and parity (see, e.g., Wozniak et al. 2000; Burud et al. 2002b; Dalal &
Kochanek 2002; Schechter et al. 2003 or Schechter & Wambsganss 2002). Once the flux
errors are enlarged to the 30% level of these systematic errors, they provide little leverage
for discriminating between models.

We can also divide the systems by the complexity of the required lens model. We define
eight of the lenses as “simple,” in the sense that the available data suggests that a model
consisting of a single primary lens in a perturbing shear (tidal gravity) field should be an
adequate representation of the gravitational potential. In some of these cases, an external
potential representing a nearby galaxy or parent group willimprove the fits, but the differ-
ences between the tidal model and the more complicated perturbing potential are small (see
§1.4). We include the quotation marks because the classification is based on an impression
of the systems from the available data and models. While we cannot guarantee that a sys-
tem is simple, we can easily recognize two complications that will require more complex
models.

The first complication is that some primary lenses have less massive satellite galaxies in-
side or near their Einstein rings. This includes two of the time delay lenses, RXJ0911+0551
and B1608+656. RXJ0911+0551 could simply be a projection effect, since neither lens
galaxy shows irregular isophotes. Here the implication formodels may simply be the need
to include all the parameters (mass, position, ellipticity· · ·) required to describe the sec-
ond lens galaxy, and with more parameters we would expect greater uncertainties inH0.
In B1608+656, however, the lens galaxies show the heavily disturbed isophotes typical of
galaxies undergoing a disruptive interaction. How one should model such a system is un-
clear. If there was once dark matter associated with each of the galaxies, how is it distributed
now? Is it still associated with the individual galaxies? Has it settled into an equilibrium
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configuration? While B1608+656 can be well fit with standard lens models (Fassnacht et
al. 2002), these complications have yet to be explored.

The second complication occurs when the primary lens is a member of a more massive (X-
ray) cluster, as in the time delay lenses RXJ0911+0551 (Morgan et al. 2001) and Q0957+561
(Chartas et al. 2002). The cluster model is critical to interpreting these systems (see §1.4).
The cluster surface density at the position of the lens (κc >∼ 0.2) leads to large corrections
to the time delay estimates and the higher-order perturbations are crucial to obtaining a
good model. For example, models in which the Q0957+561 cluster was treated simply as
an external shear are grossly incorrect (see the review of Q0957+561 models in Keeton et
al. 2000). In addition to the uncertainties in the cluster model itself, we must also decide
how to include and model the other cluster galaxies near the primary lens. Thus, lenses in
clusters have many reasonable degrees of freedom beyond those of the “simple” lenses.

1.6 Results: The Hubble Constant and Dark Matter
With our understanding of the theory and observations of thelenses we will now ex-

plore their implications forH0. We focus on the “simple” lenses PG1115+080, SBS1520+530,
B1600+434, and HE2149–2745. We only comment on the interpretation of the HE1104–
1805 delay because the measurement is too recent to have beeninterpreted carefully. We will
briefly discuss the more complicated systems RXJ0911+0551,Q0957+561, and B1608+656,
and we will not discuss the systems with problematic time delays or astrometry.

The most common, simple, realistic model of a lens consists of a singular isothermal
ellipsoid (SIE) in an external (tidal) shear field (Keeton etal. 1997). The model has 7
parameters (the lens position, mass, ellipticity, major axis orientation for the SIE, and the
shear amplitude and orientation). It has many degrees of freedom associated with the angu-
lar structure of the potential, but the radial structure is fixed with〈κ〉 ≃ 1/2. For comparison,
a two-image (four-image) lens supplies 5 (13) constraints on any model of the potential: 2
(6) from the relative positions of the images, 1 (3) from the flux ratios of the images, 0 (2)
from the inter-image time delay ratios, and 2 from the lens position. With the addition of ex-
tra components (satellites/clusters) for the more complexlenses, this basic model provides
a good fit to all the time delay lenses except Q0957+561. Although a naive counting of
the degrees of freedom (Ndo f = −2 and 6, respectively) suggests that estimates ofH0 would
be underconstrained for two-image lenses and overconstrained for four-image lenses, the
uncertainties are actually dominated by those of the time delay measurements and the as-
trometry in both cases. This is what we expect from §1.3 — the model has no degrees of
freedom that change〈κ〉 or η, so there will be little contribution to the uncertainties in H0

from the model for the potential.
If we use a model that includes parameters to control the radial density profile (i.e.,〈κ〉),

for example by adding a halo truncation radiusa to the SIS profile [the pseudo-Jaffe model,
ρ ∝ r−2(r2 + a2)−1; e.g., Impey et al. 1998; Burud et al. 2002a],∗ then we find the expected
correlation betweena andH0 — as we make the halo more concentrated (smallera), the
estimate ofH0 rises from the value for the SIS profile (〈κ〉 = 1/2 asa → ∞) to the value
for a point mass (〈κ〉 = 0 asa → 0), with the fastest changes occurring whena is similar to
the Einstein radius of the lens. We show an example of such a model for PG1115+080 in
Figure 1.3. This case is somewhat more complicated than a pure pseudo-Jaffe model because
∗ This is simply an example. The same behavior would be seen forany other parametric model in which the radial

density profile can be adjusted.
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there is an additional contribution to the surface density from the group to which the lens
galaxy belongs. As long as the structure of the radial density profile is fixed (constanta), the
uncertainties are again dominated by the uncertainties in the time delay. Unfortunately, the
goodness of fit,χ2(a), shows too little dependence ona to determineH0 uniquely. In general,
two-image lenses have too few constraints, and the extra constraints supplied by a four-
image lens constrain the angular structure rather than the radial structure of the potential.
This basic problem holds for all existing models of the current sample of time delay lenses.

The inability of the present time delay lenses to directly constrain the radial density pro-
file is the major problem for using them to determineH0. Fortunately, it is a consequence
of the available data on the current sample rather than a fundamental limitation, as we dis-
cuss in the next section (§1.7). It is, however, a simple trade-off – models with less dark
matter (lower〈κ〉, more centrally concentrated densities) produce higher Hubble constants
than those with more dark matter. We do have some theoreticallimits on the value of〈κ〉.
In particular, we can be confident that the surface density isbounded by two limiting mod-
els. The mass distribution should not be more compact than the luminosity distribution, so
a constant mass-to-light ratio (M/L) model should set a lower limit on〈κ〉>∼ 〈κ〉M/L ≃ 0.2,
and an upper limit on estimates ofH0. We are also confident that the typical lens should
not have a rising rotation curve at 1–2 optical effective radii from the center of the lens
galaxy. Thus, the SIS model is probably the least concentrated reasonable model, setting an
upper bound on〈κ〉 <∼ 〈κ〉SIS = 1/2, and a lower limit on estimates ofH0. Figure 1.4 shows
joint estimates ofH0 from the four simple lenses for these two limiting mass distributions
(Kochanek 2003b). The results for the individual lenses aremutually consistent and are un-
changed by the new 0.149±0.004 day delay for the A1-A2 images in PG1115+080 (Chartas
2003). For galaxies with isothermal profiles we findH0 = 48± 3 km s−1 Mpc−1, and for
galaxies with constantM/L we find H0 = 71± 3 km s−1 Mpc−1. While our best prior es-
timate for the mass distribution is the isothermal profile (see §1.7), the lens galaxies would
have to have constantM/L to match Key Project estimate ofH0 = 72± 8 km s−1 Mpc−1

(Freedman et al. 2001).
The difference between these two limits is entirely explained by the differences in〈κ〉

andη between the SIS and constantM/L models. In fact, it is possible to reduce theH0

estimates for each simple lens to an approximation formula,H0 = A(1− 〈κ〉) + B〈κ〉(η − 1).
The coefficients,A and|B| ≈ A/10, are derived from the image positions using the simple
theory from §1.3. These approximations reproduce numerical results using ellipsoidal lens
models to accuracies of 3 km s−1 Mpc−1 (Kochanek 2002). For example, in Figure 1.3
we also show the estimate ofH0 computed based on the simple theory of §1.3 and the
annular surface density (〈κ〉) and slope (η) of the numerical models. The agreement with
the full numerical solutions is excellent, even though the numerical models include both the
ellipsoidal lens galaxy and a group. No matter what the mass distribution is, the five lenses
PG1115+080, SBS1520+530, B1600+434, PKS1830–211,∗ and HE2149–2745 have very
similar dark matter halos. For a fixed slopeη, the five systems are consistent with a common
value for the surface density of

〈κ〉 = 1− 1.07h + 0.14(η− 1)(1− h)±0.04 (1.11)

∗ PKS1830–211 is included based on the Winn et al. (2002) modelof the HST imaging data as a single lens
galaxy. Courbin et al. (2002) prefer an interpretation withmultiple lens galaxies which would invalidate the
analysis.

13



C. S. Kochanek and P. L. Schechter

0.1 1 10
0

0.2

0.4

0.6

0.8

Fig. 1.3. H0 estimates for PG1115+080. The lens galaxy is modeled as a ellipsoidal pseudo-
Jaffe model,ρ ∝ r−2(r2 + a2)−1, and the nearby group is modeled as an SIS. As the break
radiusa →∞ the pseudo-Jaffe model becomes an SIS model, and as the breakradiusa → 0
it becomes a point mass. The heavy solid curve (hexact) shows the dependence ofH0 on the
break radius for the exact, nonlinear fits of the model to the PG1115+080 data. The heavy
dashed curve (hscaling) is the value found using our simple theory (§1.3) of time delays. The
agreement of the exact and scaling solutions is typical. Thelight solid line shows the average
surface density〈κ〉 in the annulus between the images, and the light dashed line shows the
inverse of the logarithmic slopeη in the annulus. For an SIS model we would have〈κ〉 = 1/2
andη−1 = 1/2, as shown by the horizontal line. When the break radius is large compared to
the Einstein radius (indicated by the vertical line), the surface density is slightly higher and
the slope is slightly shallower than for the SIS model because of the added surface density
from the group. As we make the lens galaxy more compact by reducing the break radius,
the surface density decreases and the slope becomes steeper, leading to a rise inH0. As
the galaxy becomes very compact, the surface density near the Einstein ring is dominated
by the group rather than the galaxy, so the surface density approaches a constant and the
logarithmic slope approaches the value corresponding to a constant density sheet (η = 1).

whereH0 = 100h km s−1 Mpc−1 and there is an upper limit ofσκ
<∼ 0.07 on the intrinsic scat-

ter of〈κ〉. Thus, time delay lenses provide a new window into the structure and homogeneity
of dark matter halos, regardless of the actual value ofH0.

There is an enormous range of parametric models that can illustrate how the extent of
the halo affects〈κ〉 and henceH0 — the pseudo-Jaffe model we used above is only one
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Fig. 1.4. H0 likelihood distributions. The curves show the joint likelihood functions for
H0 using the four simple lenses PG1115+080, SBS1520+530, B1600+434, and HE2149–
2745 and assuming either an SIS model (high〈κ〉, flat rotation curve) or a constantM/L
model (low〈κ〉, declining rotation curve). The heavy dashed curves show the consequence
of including the X-ray time delay for PG1115+080 from Chartas (2003) in the models.
The light dashed curve shows a Gaussian model for the Key Project result thatH0 = 72±
8 km s−1 Mpc−1.

example. It is useful, however, to use a physically motivated model where the lens galaxy is
embedded in a standard NFW (Navarro, Frenk, & White 1996) profile halo. The lens galaxy
consists of the baryons that have cooled to form stars, so themass of the visible galaxy
can be parameterized using the cold baryon fractionfb,cold of the halo, and for these CDM
halo models the value of〈κ〉 is controlled by the cold baryon fraction (Kochanek 2003a).
A constantM/L model is the limit fb,cold → 1 (with 〈κ〉 ≃ 0.2, η ≃ 3). Since the baryonic
mass fraction of a CDM halo should not exceed the global fraction of fb ≃ 0.15±0.05 (e.g.,
Wang, Tegmark, & Zaldarriaga 2002), we cannot use constantM/L models without also
abandoning CDM. As we reducefb,cold , we are adding mass to an extended halo around
the lens, leading to an increase in〈κ〉 and a decrease inη. For fb,cold ≃ 0.02 the model
closely resembles the SIS model (〈κ〉 ≃ 1/2, η ≃ 2). If we reducefb,cold further, the mass
distribution begins to approach that of the NFW halo withoutany cold baryons. Figure 1.5
shows how〈κ〉 andH0 depend onfb,cold for PG1115+080, SBS1520+530, B1600+434 and
HE2149–2745. Whenfb,cold ≃ 0.02, the CDM models have parameters very similar to the
SIS model, and we obtain a very similar estimate ofH0 = 52± 6 km s−1 Mpc−1 (95%
confidence). If all baryons cool, andfb,cold = fb, then we obtainH0 = 65±6 km s−1 Mpc−1

(95% confidence), which is still lower than the Key Project estimates.
We excluded the lenses requiring significantly more complicated models with multiple

lens galaxies or very strong perturbations from clusters. If we have yet to reach a consensus
on the mass distribution of relatively isolated lenses, it seems premature to extend the dis-
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Fig. 1.5. H0 in CDM halo models. The left panel shows 1− 〈κ〉 for the “simple” lenses
(PG1115+080, SBS1520+530, B1600+434, and HE2149–2745) asa function of the cold
baryon fractionfb,cold . The solid (dashed) curves include (exclude) the adiabaticcompres-
sion of the dark matter by the baryons. The horizontal line shows the value for an SIS
potential. The right panel shows the resulting estimates ofH0, where the shaded envelope
bracketing the curves is the 95% confidence region for the combined lens sample. The hor-
izontal band shows the Key Project estimate. For largerfb,cold , the density〈κ〉 decreases
and the local slopeη steepens, leading to larger values ofH0. The vertical bands in the two
panels show the lower bound onfb from local inventories and the upper bound from the
CMB.

cussion to still more complicated systems. We can, however,show that the clusters lenses
require significant contributions to〈κ〉 from the cluster in order to produce the sameH0 as
the more isolated systems. As we discussed in §1.5 the three more complex systems are
RXJ0911+0551, Q0957+561 and B1608+656.

RXJ0911+0551 is very strongly perturbed by the nearby X-raycluster (Morgan et al. 2001;
Hjorth et al. 2002). Kochanek (2003b) foundH0 = 49±5 km s−1 Mpc−1 if the primary lens
and its satellite were isothermal andH0 = 67±5 km s−1 Mpc−1 if they had constant mass-to-
light ratios. The higher value ofH0 = 71±4 km s−1 Mpc−1 obtained by Hjorth et al. (2002)
can be understood by combining §1.3 and §1.4 with the differences in the models. In partic-
ular, Hjorth et al. (2002) truncated the halo of the primary lens near the Einstein radius and
used a lower mass cluster, both of which lower〈κ〉 and raiseH0. The Hjorth et al. (2002)
models also included many more cluster galaxies assuming fixed masses and halo sizes.

Q0957+561 is a special case because the primary lens galaxy is the brightest cluster
galaxy and it lies nearly at the cluster center (Keeton et al.2000; Chartas et al. 2002). As
a result, the lens modeling problems are particularly severe, and Keeton et al. (2000) found
that all previous models (most recently, Barkana et al. 1999; Bernstein & Fischer 1999; and
Chae 1999) were incompatible with the observed geometry of the lensed host galaxy. While
Keeton et al. (2000) found models consistent with the structure of the lensed host, they cov-
ered a range of almost±25% in their estimates ofH0. A satisfactory treatment of this lens
remains elusive.

HE1104–1805 had its delay measured (Ofek & Maoz 2003) just aswe completed this
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review. Assuming the∆t = 161±7 day delay is correct, a standard SIE model of this system
predicts a very highH0 ≃ 90 km s−1 Mpc−1. The geometry of this system and the fact
that the inner image is brighter than the outer image both suggest that HE1104–1805 lies in
an anomalously high tidal shear field, while the standard model includes a prior to keep the
external shear small. A prior is needed because a two-image lens supplies too few constraints
to determine both the ellipticity of the main lens and the external shear simultaneously. Since
the images and the lens in HE1104–1805 are nearly colinear, the anomalousH0 estimate for
the standard model may be an example of the shear degeneracy we briefly mentioned in
§1.3. At present the model surveys needed to understand the new delay have not been made.
Observations of the geometry of the host galaxy Einstein ring will resolve any ambiguities
due to the shear in the near future (see §1.7).

The lens B1608+656 consists of two interacting galaxies, and, as we discussed in §1.5,
this leads to a greatly increased parameter space. Fassnacht et al. (2002) used SIE models
for the two galaxies to findH0 = 61− 65 km s−1 Mpc−1, depending on whether the lens
galaxy positions are taken from theH-band orI-band lensHST images (the statistical errors
are negligible). The position differences are probably created by extinction effects from the
dust in the lens galaxies. Like isothermal models of the “simple” lenses, theH0 estimate
is below local values, but the disagreement is smaller. These models correctly match the
observed time delay ratios.

1.7 Solving the Central Concentration Problem
We can take four approaches to solving the central concentration problem. First,

the density profiles of galaxies are not a complete mystery, and we could apply the con-
straints derived from observations of other (early-type) galaxies to the time delay systems.
Second, we could make new observations of the existing time delay lenses in order to ob-
tain additional data that would constrain the density profiles. Third, we could measure the
time delays in the systems where the lens galaxies already have well-constrained densities.
Fourth, we can use the statistical properties of time delay lenses to break the degeneracies
seen in individual lenses.

If we assume that the time delay lenses have the same density structure as other early-type
galaxies, then models close to isothermal are favored. For lenses with extended or multi-
component sources, the lens models constrain the density distributions and the best fit mod-
els are usually very close to isothermal (e.g., Cohn et al. 2001; Winn, Rusin, & Kochanek
2003). Stellar dynamical observations of lenses also favorisothermal models (e.g., Treu &
Koopmans 2002a). Stellar dynamical (e.g., Romanowsky & Kochanek 1999; Gerhard et
al. 2001) and X-ray (e.g., Loewenstein & Mushotzky 2003) observations of nearby early-
type galaxies generally find flat rotation curves on the relevant scales. Finally, weak lensing
analyses require significant dark matter on large scales in early-type galaxies (McKay et
al. 2002). In general, the data on early-type galaxies seem to prefer isothermal models on
the scales relevant to interpreting time delays, while constantM/L models are firmly ruled
out. If we must ultimately rely on the assumption that the density profiles of time delay
lenses are similar to those of other early-type galaxies, the additional uncertainty added by
this assumption will be small and calculable. Moreover, theassumption is no different from
the assumptions of homogeneity used in other studies of the distance scale.

We can avoid any such assumptions by determining the densityprofiles of the time delay
lenses directly. One approach is to measure the kinematic properties of the lens galaxy. Since
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the mass inside the Einstein ring is fixed by the image geometry, the velocity dispersion is
controlled by the central concentration of the density. Treu & Koopmans (2002b) apply this
method to PG1115+080 and argue that the observed velocity dispersion requires a mass dis-
tribution between the isothermal and constantM/L limits with H0 = 59+12

−7 km s−1 Mpc−1.
Note, however, that with this velocity dispersion the lens galaxy does not lie on the fun-
damental plane, which is very peculiar. A second approach isto use deep infrared imag-
ing to determine the structure of the lensed host galaxy of the quasar (Kochanek, Keeton,
& McLeod 2001). The location and width of the Einstein ring depends on both the ra-
dial and angular structure of the potential, although the sensitivity to the radial structure
of the lens is weak when the annulus bracketing the lensed images is thin (∆R/〈R〉 small;
Saha & Williams 2001). This method will work best for asymmetric two-image lenses
(∆R/〈R〉 ≈ 1). The necessary data can be obtained withHST for most time delay lenses.

We can also focus our monitoring campaigns on lenses alreadyknown to have well-
constrained density profiles. For the reasons we have already discussed, systems with multi-
component sources, well-studied images of the host galaxy or stellar dynamical measure-
ments will have better constrained density profiles than those without any additional con-
straints. We can also avoid most of the uncertainties in the density profile by measuring the
time delays of very low-redshift lenses. When the lens is very close to the observer, the im-
ages lie very close to the center of the lens where the stellarmass dominates. A constantM/L
model then becomes a very good approximation and we need worry little about the amount
or the distribution of the dark matter. The one such candidate at present, Q2237+0305 at
zl = 0.04, will have very short delays, but these could be measured by an X-ray monitoring
program using theChandra observatory.

Finally, the statistical properties of larger samples of time delay lenses will also help to
solve the problem. We already saw in §1.6 that the “simple” time delay lenses must have
very similar densities, independent ofH0. This already means that the implications forH0

no longer depend on individual lenses. In some ways the similarity of the densities is not
an advantage — it is actually easier to determineH0 if the density distributions are inhomo-
geneous (Kochanek 2003b). On the other hand, there are well-defined approaches to using
the statistical properties of lens models to estimate parameters that cannot be determined
from the models of the individual systems (see Kochanek 2001). The statistics of the prob-
lematic flux ratios observed in the lenses (see §1.5) may alsoprovide a means of estimating
〈κ〉. Schechter & Wambsganss (2002) point out that in four-imagequasar lenses there is
a tendency for the brightest saddle point image to be demagnified compared to reasonable
lens models. Microlensing by the stars can naturally explain the observations if the surface
density of stars is a small fraction of the total surface density near the images (κ∗ ≪ 〈κ〉),
which would rule out constantM/L models whereκ∗ ≃ 〈κ〉.

1.8 Conclusions
The determination ofH0 using gravitational lens time delays has come of age. The

last few years have seen a dramatic increase in the number of delay measurements, and
there is no barrier other than sociology to rapidly increasing the sample. The interpretation
of time delays requires a model for the gravitational potential of the lens. Fortunately, the
physics determining time delays is well understood, and theonly important variable is the
average surface density〈κ〉 of the lens near the images for which the delay is measured.
Unfortunately, there is a tendency in the literature to conceal rather than to illuminate this
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understanding. Provided a lens does not lie in a cluster where the cluster potential cannot
be described by a simple expansion, any lens model that includes the parameters needed to
vary the average surface density of the lens near the images and to change the ratio between
the quadrupole moment of the lens and the environment includes all the parameters needed
to model time delays, to estimate the Hubble constant, and tounderstand the systematic
uncertainties in the results.All differences between estimates of the Hubble constant for the
simple time delay lenses can be understood on this basis.

Models for the four time delay lenses that can be modeled using a single lens galaxy
predict thatH0 = 48±3 km s−1 Mpc−1 if the lens galaxies have isothermal density profiles
with flat rotation curves, andH0 = 71±3 km s−1 Mpc−1 if they have constant mass-to-light
ratios. The Key Project estimate ofH0 = 72±8 km s−1 Mpc−1 agrees with the lensing results
only if the lenses have little dark matter. We have strong theoretical prejudices and estimates
from other observations of early-type galaxies that we should favor the isothermal models
over the constantM/L models. We feel that we have reached the point where the results
from gravitational lens time delays deserve serious attention and that there is a reasonable
likelihood that the local estimates ofH0 are too high. A modest investment of telescope time
would allow the measurement of roughly 5–10 time delays per year, and these new delays
would rapidly test the current results. Other observationsof time delay lenses to measure
the velocity dispersions of the lens galaxies or to determine the geometry of the lensed
images of the quasar host galaxy can be used to constrain the mass distributions directly.
The systematic problems associated with the density profileare soluble not only in theory
but also in practice, and the investment of the community’s resources would be significantly
less that than already invested in the distance scale.

The time delay measurements also provide a new probe of the density structure of galaxies
at the boundary between the baryonic and dark matter dominated parts of galaxies (projected
distances of 1–2 effective radii). Even if we ignore the actual value ofH0, we can still study
the differences in the surface densities. For example, we can show that the present sample of
simple lenses must have very similar surface densities. This region is very difficult to study
with other probes.

Finally, the time delay measurements can be used to determine cosmological parameters.
Time delays basically measure the distance to the lens galaxy, so we can make the same
sorts of cosmological measurements as Type Ia supernovae. If the variations in〈κ〉 between
lens galaxies are small, as seem to be indicated by the present data, then the accuracy of
the differential measurements will be very good. The present sample has little sensitivity
to the cosmological model even with the mass distribution fixed because the time delay
uncertainties are still too large and the redshift range is too restricted (zl = 0.31 to 0.72).
If we assume that other methods will determine the distance factors more accurately and
rapidly, then we can use the time delays to study the evolution of galaxy mass distributions
with redshift.
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