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Abstract

There are now 10 firm time delay measurements in gravitdtienses. The physics of time
delays is well understood, and the only important variablariterpreting the time delays
to determineH is the mean surface mass dengity (in units of the critical density for
gravitational lensing) of the lens galaxy at the radius eflénsed images. More centrally
concentrated mass distributions with lowel predict higher Hubble constants, with o

1- (k) to lowest order. While we cannot determifie directly given the available data
on the current time delay lenses, we filg = 48+ 3 km s* Mpc™ for the isothermal
(flat rotation curve) models, which are our best presenimedé for the mass distributions
of the lens galaxies. Only if we eliminate the dark matterohafl the lenses and use a
constant mass-to-light ratidv(/L) model to findHo = 714+3 km s* Mpc is the result
consistent with local estimates. Measurements of timeydetabetter-constrained systems
or observations to obtain new constraints on the currenesys provide a clear path to
eliminating the(x) degeneracy and making estimateddgfwith smaller uncertainties than
are possible locally. Independent of the valuélgfthe time delay lenses provide a new and
unique probe of the dark matter distributions of galaxies elnsters because they measure
the total (light+ dark) matter surface density.

11 Introduction

Fifteen years prior to their discovery in 1979, Refsdal @@#utlined how gravita-
tionally lensed quasars might be used to determine the Hdulaistant. Astronomers have
spent the quarter century since their discovery workingtibetdifficult details not consid-
ered in Refsdal's seminal papers.

The difficulties encountered fall into two broad categoriemeasurement and modeling.
Time delays can be hard to measure if the fluxes of the imagestary, or if the images
are faint, or if they lie very close to each other. Modeling\gtational potentials with a small
number of constraints is likewise difficult, either becatlse lens geometry is complex or
because the data poorly constrain the most important espétte gravitational potential.
We will argue that these difficulties are surmountable, tbrinciple and in practice, and
that an effort considerably smaller than that of W8T Hubble Constant Key Project will
yield a considerably smaller uncertainty in the Hubble tanisHo.

While the number of systems with measured time delays islsthalr interpretation im-
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plies a value foHg, which, given our current understanding of the dark matigridutions

of galaxies, is formally inconsistent with that obtainedngsCepheids. The Key Project
value ofHp =72+ 8 km s! Mpc™ (Freedman et al. 2001) is consistent with the lens data
only if the lens galaxies have significantly less dark matian is expected theoretically or
has been measured for other early-type galaxies. Whil@reisature to argue for replacing
the local estimates, we hope to persuade the astronomigahaoaoity that the time delay
result deserves both careful attention and further study.

Interpreting time delays requires a model for the graotsil potential of the lens, and
in most cases the uncertainties in the model dominate thertaigty inHg. Thus, the
main focus of this review will be to explain the dependenctroé delays on gravitational
potentials. We start if®1.2 by introducing the time delayhmod and illustrating the physics
of time delays with a series of simple models. [0%1.3 we m\aegeneral mathematical
theory of time delays to show that, for most lenses, the amlgdrtant parameter of the
model is the mean surface density of the lens at the radileedfitages. In[&Il4 we discuss
the effects of the environment of the lens on time delays. &/@ew the data on the time
delay lenses in[&1l:5 and their implications for the Hubblestant and dark matter in early-
type galaxies in[8Il6. The present time delay lenses havgendeacy betweeH, and
the amount of dark matter, so i 8lL.7 we outline several ambres that can eliminate the
degeneracy. Finally, in[81.8 we discuss the future of timMayde Unless otherwise stated,
we assume a flaf)y, = 0.3, 24 = 0.7 cosmological model.

12 Time Delay Basics

The observations of gravitationally lensed quasars areweterstood in light of
Fermat’s principle (e.g., Blandford & Narayan 1986). Intaming mass between a source
and an observer introduces an effective index of refractibereby increasing the light-
travel time. The competition between this Shapiro delaynftbe gravitational field and the
geometric delay due to bending the ray paths leads to theatiwmof multiple images at the
stationary points (minima, maxima, and saddle points) ettavel time (for more complete
reviews, see Narayan & Bartelmann 1999 or Schneider, Elgfalco 1992).

As with glass optics, there is a thin-lens approximation #pplies when the optics are
small compared to the distances to the source and the obsérthlis approximation, we
need only the effective potential(X) = (2/c?)(Dis/Ds) [ dz¢, found by integrating the 3D
potentialy along the line of sight. The light-travel time is

re9= | 22| |22 5 (%) -vea) 1)

C

wherex= (x,y) = R(cos9, sinf) andﬁ are the angular positions of the image and the source,
¥(X) is the effective potential X(- 5)2/2 is the geometric delay in the small-angle approx-
imation, z is the lens redshift, an®,, Ds, andD,s are angular-diameter distances to the
lens, to the source, and from the lens to the source, respBctiThe only dimensioned
quantity in the travel time is a factor &f;* ~ 10h™* Gyr arising from theH; scaling of the
angular-diameter distances.

We observe the images at the extrema of the time delay fumatibich we find by setting
the gradients with respect to the image positions equalrm, xgr =0, and finding all the
stationary pointsXa, Xg, - - -) associated with a given source positﬁmThe local magnifica-
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Fig.1.1. Schematic diagram of a two-image time delay leh& I[&ns lies at the origin, with
two images A and B at radRa andRg from the lens center. The images define an annulus of
average radiugR) = (Ra+Rg)/2 and widthAR = Ry —Rg, and the images subtend an angle
Abpg relative to the lens center. For a circular Iehéag = 180° by symmetry.

tion of an image is determined by the magnification teMégr whose inverse is determined
by the second derivatives of the time delay function,
d_e e 1-k-~ycos?d sin2
..1 = = v v v v
Mij” = ViV (9 ( ysin2,, 1-K+vycosd, ) ’
where the convergenee= X /3 is the local surface density in units of the critical surface
density; = ¢?Ds/47GD,D;s, andry andd., define the local shear field and its orientation.

The determinant of the magnification tensor is the net magatifin of the image, but itis a
signed quantity depending on whether the image has poéitiggima, minima) or negative
(saddle points) parity.

(1.2)



C. S Kochanek and P. L. Schechter

A simple but surprisingly realistic starting point for mditig lens potentials is the singu-
lar isothermal sphere (the SIS model) in which the lens giztes simply

Djs o2 . o 2 Dis
(X) = bR, where b=4r D. & 1.45(225 - s‘l) D. (1.3)
is a deflection scale determined by geometry angithe 1D velocity dispersion of the lens
galaxy. For|3| < b, the SIS lens produces two colinear images at ragiF |3| +b and
Rs=b- |ﬁ| on opposite sides of the lens galaxy (as in Eigl 1.1 but vi#hg = 18C¢°).* The
A image is a minimum of the time delay and leads the saddletpBinwith a time delay
difference of

Atss=TB—TA=% [“TZI} [DISZS] (RR-Rg). (1.4)

Typical time delay differences of months or years are theseqnence of multiplying the
~ 10h™ Gyr total propagation times by the square of a very small agk: 3 x 10°°
radians soR3 ~ 10711). The SIS model suggests that lens time delay measureneshise
the determination of the Hubble constant to a problem ofdifitial astrometry. This is
almost correct, but we have made two idealizations in usiegiS model.

The first idealization was to ignore deviations of the radimbnopole) density profile
from that of an SIS with density o r 2, surface density « R™, and a flat rotation curve.
The SIS is a special case of a power-law monopole with lersnpiat

sz () 15

corresponding to a (3D) density distribution with dengity r ™, surface density. oc RV,

and rotation curve, oc r@m/2, Forn =2 we recover the SIS model, and the normalization is
chosen so that the scdbds always the Einstein ring radius. Models with smallerd)n
have less (more) centrally concentrated mass distribsitami have rising (falling) rotation
curves. The limit) — 3 approaches the potential of a point mass. By adjustingdhlels
and the source positiqﬁ|, we can fit the observed positions of two images at iRgdandRs

on opposite sidesYfg = 180°) of the lens for any value of.t The expression for the time
delay difference can be well approximated by (Witt, Mao, &k 2000; Kochanek 2002)

—n)2 2
At(n) =ms—7a~ (n—1)Atgs 1—(21;7) (A—R) ], (1.6)

(R)

where(R) = (Ra+Rg)/2 ~ bandAR=Ra—Rg (see FigIll). While the expansion assumes

AR/(R) (or |3]) is small, we can usually ignore the higher-order terms. r&tae two
important lessons from this model.

* The deflections produced by the SIS lens are consméﬂﬁ| =b, so the total image separation is always Zhe
outer image is brighter than the inner image, with signedn"riizﬂ:gyyttionsM/;1 =1-b/Ra > 0 (a positive parity
minimum) andViz? = 1-b/Rg < 0 (a negative parity saddle point). The model paramelisr¢Ra+Rg)/2 = (R)
and|§\ =(Ra—Rg)/2 = AR/2, can be determined uniquely from the image positions.

1 In theory we have one additional constraint because theeniflag ratio measures the magnification ratio,
fa/ fe = [Mal/|Mg|, and the magnification ratio dependsqnUnfortunately, the systematic errors created by
milli- and microlensing make it difficult to use flux ratios m®del constraints (se€ElL.5).
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(1) Image astrometry of simple two-image and four-imagsdsrgenerally cannot constrain the
radial mass distribution of the lens.

(2) More centrally concentrated mass distributions (Iargepredict longer time delays, result-
ing in a larger Hubble constant for a given time delay measerd.

These problems, which we will address from a different pectipe in £L.B, are the cause of
the uncertainties in estimatesld§ from time delays.

The second idealization was to ignore deviations from tarcsymmetry due to either the
ellipticity of the lens galaxy or the local tidal gravity ftefrom nearby objects. A very nice
analytic example of a lens with angular structure is a siagisiothermal model witlarbi-
trary angular structure, where the effective potential is bRF (6), andF(0) is an arbitrary
function. The model family includes the most common lens ehathe singular isothermal
ellipsoid (SIE). The time delays for this model family arenpiy Atgs, independent of the
angular structure of thelens (Witt et al. 2000)! This result, while attractive, does notdin
general, and we will require the results §f81.3 to understha effects of angular structure
in the potential.

13 Understanding Time Delays. A General Theory

The need to model the gravitational potential of the lenkesaspect of interpreting
time delays that creates the greatest suspicion. The mivstex view is that it renders the
project “hopeless” because we will never be able to guaestht the models encompass the
degrees of freedom needed to capture all the systematictamties. In order to address
these fears we must show that we understand the specific riegpef the gravitational
potential determining time delays and then ensure that atarpeterized models include
these degrees of freedom.

The examples we considered ii-81.2 illustrate the basiciphys time delays, but an
extensive catalog of (non)parametric models demonsty#i@a same properties may not be
convincing to the skeptic. We will instead show, using staddnathematical expansions
of the potential, which properties of the lens galaxy arainegl to understand time delays
with accuracies of a few percent. While we can understandahadts of all models for the
time delays of gravitational lenses based on this simplerth&ull numerical models should
probably be used for most detailed, quantitative analyBegtunately, there are publically
available programs for both the parametric and nonpararegiproaches. Our analysis
uses the geometry of the schematic lens shown in Figule lhé. tWo images define an
annulus bounded by their radRRs andRg, and with an interior region foR < Rg and an
exterior region folR > Ra.

The key to understanding time delays comes from Gorendtaiap, & Shapiro (1988;
see also Saha 2000), who showed that the time delay of a airtarls depends only on
the image positions and ttsarface density «(R) in the annulus between the images. The
mass of the interior region is implicit in the image posisand accurately determined by
the astrometry. From Gauss’ law, we know that the radialifistion of the mass in the
interior region and the amount or distribution of mass in éxéerior region is irrelevant.
A useful approximation is to assume that the surface deirsitiye annulus can becally

* Thegraviens andlensmodel (Keeton 2003, cfa-www.harvard.edutastles) packages include a very broad range
of parametric models for the mass distributions of lensed,thePixelLens package (Williams & Saha 2000,
ankh-morpork.maths.qmw.ac.ukéaha/astron/lens/pix/) implements a nonparametric agpro
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approximated by a power law R and that the mean surface density in the annulus is
(k) =(X)/Xc. The time delay between the images is (Kochanek 2002)

1-n(k) [ AR\? AR\*
125 () +O ((@) )
Thus, the time delay is largely determined by the averagsitiefx), with only modest
corrections from the local shape of the surface densityibigton even whemM\R/(R) ~
1. For example, the second-order expansion is exact for 8nedis (k) =1/2, n = 2)
and reproduces the time delay of a point mass Iéns< 0) to better than 1% even when
AR/(R) = 1. This local model also explains the time delay scalingkeflobal power-law
models we discussed ifi&IL.2.0Ax r™" global power law has surface densjty) = (3-7)/2
near the Einstein ring, so the leading term of the time dedaiti= 2Atgs(1-(k)) = (n -
1)Atgs, just as in Equatior{1l.6).

At = ZAtss (17)

e The time delay is not determined by the global structure efrédial density profile but
rather by the surface density near the Einstein ring.

Gorenstein et al. (1988) considered only circular lensatsalnultipole expansion allows
us to understand the role of angular structure (KochaneRY08n estimate to the same
order as in Equatior{1.7) requires only the quadrupole nmisnef the regions interior
and exterior to the annulus, provided the strengths of thbdriorder multipoles of the
potential have the same order of magnitude as for an eltipsdiensity distributiort. This
approximation can fail for the lenses in clusters (S€€l81™)e complete expansion for
At when the two quadrupole moments have independent amitntorientations is not
very informative. However, the leading term of the expansihen the two quadrupole
moments are aligned illustrates the role of angular strectGiven an exterior quadrupole
(i.e., an external shear) of amplituglg; and an interior quadrupole of amplituglg sharing
a common axi¢,, the quadrupole potential is

4

1 R
b2 =3 (%xtRz"'Vint%) cos2¢-0,) (1.8)
if we define the amplitudes at radiyR). For images at positionBa(cosfa,sinda) and
Rs(cosg, sindg) relative to the lens galaxy (see Hig.11.1), the leading tefthe time delay

is
Sin?(Afag/2)

1_4fint COS’z(A@AB/Z)’

where Abfag = 0a— 0 and fint = vint/(7ex + 7int) is the fraction of the quadrupole due to

the interior quadrupole momeny;. We need not worry about the possibility of a singular
denominator — successful global models of the lens do nowvalich configurations.

At ~ 2Atgs(1- () (1.9)

* If the quadrupole potential), « cosd, has dimensionless amplitudg, then it produces ray deflections of
orderO(ezb) at the Einstein ring of the lens. In a four-image lens thedqupole deflections are comparable
to the thickness of the annulus, sp~ AR/(R). In a two-image lens they are smaller than the thickness of
the annulus, se; < AR/(R). For an ellipsoidal density distribution, the cos) multipole amplitude scales
aseom ~ €' S (AR/(R))™. This allows us to ignore the quadrupole density distrdouin the annulus and all
higher-order multipoles. It is important to remember thateptials are much rounder than surface densities
[with relative amplitudes for a cos®) multipole of roughlym=:m:1 for potentials:deflections:densities], so
the multipoles relevant to time delays converge rapidlyneiee very flat surface density distributions.
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A two-image lens has too few astrometric constraints toyfathnstrain a model with
independent, misaligned internal and external quadrgpdi®@rtunately, when the lensed
images lie on opposite sides of the lens gala&y4{s ~ 7 +0, |§| < 1), the time delay
becomes insensitive to the quadrupole structure. Provideangular deflections are smaller
than the radial deflection$({R) < AR), the leading term of the time delay reduces to the
result for a circular lensAt ~ 2Atgs(1-(k)). There is, however, one limiting case to
remember. If the images and the lens are colinear, as in aisphlens, the component of
the shear aligned with the separation vector acts like ariboribn to the convergence. In
most lenses this would be a modest additional uncertainty tha typical lens these shears
must be small, the sign of the effect should be nearly ran@mihit is only a true degeneracy
in the limit that everything is colinear.

A four-image lens has more astrometric constraints and oastin a model with in-
dependent, misaligned internal and external quadrupdles.quadrupole moments of the
observed lenses are dominated by external shear, fitks 1/4 unless there is more than
one lens galaxy inside the Einstein ring. The ability of tls&r@metry to constrairfiy is
important because the delays depend stronglfjpmhen the images do not lie on opposite
sides of the galaxy. If external shears domindig,~ 0 and the leading term of the delay
becomesAt ~ 2Atgs(1 - (k))sirf Afag/2. If the model is isothermal, like the = rF(6)
models we considered if.81.2, thép = 1/4 and we again find that the delay is indepen-
dent of the angle, witi\t ~ 2Atgs(1-(x)). The time delay ratios in a four-image lens are
largely determined by the angular structure and providesglcbf the potential model.

In summary, if we want to understand time delays to an acgurampetitive with studies
of the local distance scale (5%—-10%), the only importanitée is the surface density:)
of the lens in the annulus between the images. When modedsl loasthe same data for the
time delay and the image positions predict different vafaebly, the differences can always
be understood as the consequence of different choicés foln parametric modelé<) is
adjusted by changing the central concentration of the lemsl{ken in the global power-law
models), and in the nonparametric models of Williams & S&t0) it is adjusted directly.
The expansion models of Zhao & Qin (2003a,b) mix aspects thf &pproaches.

14 Lenses Within Clusters

Most galaxies are not isolated, and many early-type leresxggg are members of
groups or clusters, so we need to consider the effects obtta €énvironment on the time
delays. Weak perturbations are easily understood singevitilesimply be additional con-
tributions to the surface density«)) and the external shear/quadrupolg) we discussed
in §L.3. In this section we focus on the consequences of [z@gerbations.

As a first approximation we can assume that a nearby clustga{axy) can be modeled
by an SIS potential¥(X) = B|X-X;|, whereB is the Einstein radius of the cluster and
X = Re(cosfe, sinde) is the position of the cluster relative to the primary lenale can
understand its effects by expanding the potential as assetiR/R., dropping constant
and linear terms that have no observable consequenceg] théin

mc:%% —%%chosze—ecwo(%@). (1.10)
The first term has the form (2)x.R?, which is the potential of a uniform sheet whose
surface density.c = B/2R; is that of the cluster at the lens center. The second termhieas t
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form (1/2)y.R?cos 2 —d.), which is the (external) tidal sheat = B/2R. that would be
produced by putting all the cluster mass inside a ring ofusRj at the cluster center. All
realistic lens models need to incorporate a tidal shear thrento objects near the lens or
along the line of sight (Keeton, Kochanek, & Seljak 1997}, dmiwe discussed il &1.3 the
shear does not lead to significant ambiguities in the timaydestimates. Usually the local
shear cannot be associated with a particular object urlesguite strong{. ~ 0.1).*

The problems with nearby objects arise when the convergensecomes large because
of a global degeneracy known as timass-sheet degeneracy (Falco, Gorenstein, & Shapiro
1985). If we have a model predicting a time delay and then add a sheet of constant
surface density., then the time delay is changed to{&.) Aty without changing the image
positions, flux ratios, or time delay ratios. Its effects ¢mnunderstood from[&¥]1.3 as a
contribution to the annular surface density wi#) = xc andn = 1. The parameters of the
lens, in particular the mass scdieare also rescaled by factors of &, so the degeneracy
can be broken if there is an independent mass estimate Farefte cluster or the galaxy.
When the convergence is due to an object like a cluster, tha@rstrong correlation between
the convergence; and the sheay, that is controlled by the density distribution of the cluste
(for our isothermal modek; = ~vc). In most circumstances, neglecting the extra surface
density coming from nearby objects (galaxies, groupsets}leads to an overestimate of
the Hubble constant because these objects all hawe0.

If the cluster is sufficiently close, then we cannot ignore lligher-order perturbations
in the expansion of Equatioh{T110). They are quantitatiimlportant when they produce
deflections at the Einstein ring radibsf the primary lensB(b/R)?, that are larger than
the astrometric uncertainties. Because these unceesiate small, the higher-order terms
quickly become important. If they are important but ignomethe models, the results can
be very misleading.

15 Observing Time Delays and Time Delay L enses
The first time delay measurement, for the gravitational ©@0957+561, was re-

ported in 1984 (Florentin-Nielsen 1984). Unfortunatelgomtroversy then developed be-
tween a short delay~{ 1.1 years, Schild & Cholfin 1986; Vanderriest et al. 1989) and a
long delay ¢ 1.5 years, Press, Rybicki, & Hewitt 1992a,b), which was finaiftled in
favor of the short delay only after 5 more years of effort (Kifnet al. 1997; also Schild &
Thomson 1997 and Haarsma et al. 1999). Factors contribtgtitige intervening difficulties
included the small amplitude of the variations, systemeffiects, which, with hindsight, ap-
pear to be due to microlensing and scheduling difficultiegi{lbechnical and sociological).

While the long-running controversy over Q0957+561 led torpaublicity for the mea-

* There is a small random componentotontributed by material along the line of sight (Barkana @99 his
introduces small uncertainties in ti estimates for individual lenses (an rms convergence.@f-©0.05,
depending on the source redshift), but is an unimportantceoof uncertainty in estimates from ensembles of
lenses because it is a random variable that averages to zero.

* For the cluster this can be done using weak lensing (e.gch€iset al. 1997 in Q0957+561), cluster galaxy
velocity dispersions (e.g., Angonin-Willaime, Soucail Manderriest 1994 for Q0957+561, Hjorth et al. 2002
for RXJ0911+0551) or X-ray temperatures/luminositieg.(gMorgan et al. 2001 for RXJ0911+0551 or Chartas
et al. 2002 for Q0957+561). For the lens galaxy this can beedeith stellar dynamics (Romanowsky &
Kochanek 1999 for Q0957+561 and PG1115+080, Treu & Koopr@@0gb for PG1115+080). The accuracy
of these methods is uncertain at present because eactsdufiier its own systematic uncertainties. When the
lens is in the outskirts of a cluster, as in RXJ0911+0551s firobably reasonable to assume that ¢, as
most mass distributions are more centrally concentrated i$othermal.
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Table 1.1.Time Delay Measurements

System Nim At (days) Astrometry Model Ref.
HE1104-1805 2 1617 + “simple” 1
PG1115+080 4 252 + “simple” 2
SBS1520+530 2 1303 + “simple” 3
B1600+434 2 512 +/- “simple” 4
HE2149-2745 2 1012 + “simple” 5
RXJ0911+0551 4 146 4 + cluster/satellite 6
Q0957+561 2 41% 3 + cluster 7
B1608+656 4 T&E2 +/- satellite 8
B0218+357 2 16+0.2 - “simple” 9
PKS1830-211 2 264 - “simple” 10
B1422+231 4 (8:3) + “simple” 11

Nim is the number of imageg\t is the longest of the measured delays anddts 1
error; delays in parenthesis require further confirmatfidre “Astrometry”

column indicates the quality of the astrometric data fordystem:+ (good),+/-
(some problems); (serious problems). The “Model” column indicates the type o
model needed to interpret the delays. “Simple” lenses candmeled as a single
primary lens galaxy in a perturbing tidal field. More comptegdels are needed if
there is a satellite galaxy inside the Einstein ring (“da€) of the primary lens
galaxy, or if the primary lens belongs to a cluster. Refeesn€l) Ofek & Maoz
2003, also see Gil-Merino, Wistozki, & Wambsganss 2002, Relfsdal, &
Stabell 2002, and Schechter et al. 2002; (2) Barkana 199@dan Schechter et
al. 1997; (3) Burud et al. 2002b; (4) Burud et al. 2000, alsopfoans et al. 2000;
(5) Burud et al. 2002a; (6) Hjorth et al. 2002; (7) Kuaét al. 1997, also Schild
& Thomson 1997 and Haarsma et al. 1999; (8) Fassnhacht et@2; 29) Biggs et
al. 1999, also Cohen et al. 2000; (10) Lovell et al. 1998; @4dthaik &
Narasimha 2001.

surement of time delays, it allowed the community to comentaderstanding of the sys-
tematic problems in measuring time delays, and to develompadorange of methods for
reliably determining time delays from typical data. Onlg tbociological problem of con-
ducting large monitoring projects remains as an impedin@rhe measurement of time
delays in large numbers. Even these are slowly being overcwith the result that the last
five years have seen the publication of time delays in 11 sys{see Table 1.1).

The basic procedures for measuring a time delay are simplenoAitoring campaign
must produce light curves for the individual lensed imadpas &re well sampled compared
to the time delays. During this period, the source quasarendgns must have measurable
brightness fluctuations on time scales shorter than thetoramg period. The resulting light
curves are cross correlated by one or more methods to mehsudelays and their uncer-
tainties (e.g., Press et al. 1992a,b; Beskin & Oknyansl@p] Pelt et al. 1996; references
in Table 1.1). Care must be taken because there can be saifiraesorrelated variabil-
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Fig. 1.2. VLA monitoring data for the four-image lens B16@%6. The left panel shows
(from top to bottom) the normalized light curves for the Bl¢fil squares), A (open di-
amonds), C (filled triangles) and D (open circles) images &sation of the mean Ju-
lian day. The right panel shows the composite light curvetlier first monitoring season
after cross correlating the light curves to determine theetdelays Atag = 31.5+ 1.5,
Atcg = 36.0+ 1.5 and Atpg = 77.0+ 1.5 days) and the flux ratios. (From Fassnacht et
al. 2002.)

ity between the images due to systematic errors in the phettgrand real effects such as
microlensing of the individual images (e.g., Koopmans et2000; Burud et al. 2002b;
Schechter et al. 2003). Figurell.2 shows an example, theifagdight curves from the
radio lens B1608+656 by Fassnacht et al. (2002), where thatieams of all four lensed
images have been traced for over three years. One of the fenmsysB1422+231, is lim-
ited by systematic uncertainties in the delay measuremdis brand new time delay for
HE1104-1805 (Ofek & Maoz 2003) is probably accurate, butyredo be interpreted in
detail.

We want to have uncertainties in the time delay measurentbatsare unimportant
for the estimates oHy. For the present, uncertainties of order 3%—-5% are ade@sate
improved delays are still needed for PG1115+080, HE2144523nd PKS1830-211).
In a four-image lens we can measure three independent titagsjeand the dimension-
less ratios of these delays provide additional constraintshe lens models (se€_8lL.3).
These ratios are well measured in B1608+656 (Fassnacht 20@2), poorly measured
in PG1115+080 (Barkana 1997; Schechter et al. 1997; Cha@d3) and unmeasured in
either RXJ0911+0551 or B1422+231. Using the time delaydsras very precise probes
of Hy, dark matter and cosmology will eventually require stilladler delay uncertainties
(~ 1%). Once a delay is known to 5%, it is relatively easy to redhe uncertainties further
because we can accurately predict when flux variations wgkar in the other images and
need to be monitored.

The expression for the time delay in an SIS lens (Eqnd. 1.4aksvhe other data that are
necessary to interpret time delays. First, the source arscréashifts are needed to compute
the distance factors that set the scale of the time delayturkely, we know both redshifts
for all 11 systems in Table 1.1. The dependence of the angidaneter distances on the
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cosmological model is unimportant until our total uncerti#is approach 5% (se€8l.8).
Second, we require accurate relative positions for the @ramd the lens galaxy. These
uncertainties are always dominated by the position of the ¢mlaxy relative to the images.
For most of the lenses in Table 1.1, observations with ragierierometers (VLA, Merlin,
VLBA) and HST have measured the relative positions of the images anddémsecuracies

< 07005. Sufficiently deepdST images can obtain the necessary data for almost any lens,
but dust in the lens galaxy (as seen in B1600+434 and B16@-£@% limit the accuracy of

the measurement even in a very deep image. For B0218+357K8ti8BB0-211, however,
the position of the lens galaxy relative to the images is matvkn to sufficient precision or

is disputed (see Léhar et al. 2000; Courbin et al. 2002; Wirah. 002).

In practice, we fit models of the gravitational potential swained by the available data
on the image and lens positions, the relative image fluxed,tla@ relative time delays.
When imposing these constraints, it is important to realie lens galaxies are not per-
fectly smooth. They contain both low-mass satellites aatsghat perturb the gravitational
potential. The time delays themselves are completely anggtl by these substructures.
However, as we take derivatives of the potential to deteentive ray deflections or the
magnification, the sensitivity to substructures in the Igataxy grows. Models of sub-
structure in cold dark matter (CDM) halos predict that thbsstucture produces random
perturbations of approximately’001 in the image positions (see Metcalf & Madau 2001,
Dalal & Kochanek 2002). We should not impose tighter asttbimeonstraints than this
limit. A more serious problem is that substructure, whetbegellites (“millilensing”) or
stars (“microlensing”), significantly affect image fluxeglwamplitudes that depend on the
image magnification and parity (see, e.g., Wozniak et al02B0rud et al. 2002b; Dalal &
Kochanek 2002; Schechter et al. 2003 or Schechter & Wambsd2002). Once the flux
errors are enlarged to the 30% level of these systematicsettwey provide little leverage
for discriminating between models.

We can also divide the systems by the complexity of the regugns model. We define
eight of the lenses as “simple,” in the sense that the availdaita suggests that a model
consisting of a single primary lens in a perturbing sheaa(tgravity) field should be an
adequate representation of the gravitational potentialsoime of these cases, an external
potential representing a nearby galaxy or parent groupimplrove the fits, but the differ-
ences between the tidal model and the more complicatedrperipotential are small (see
g1.4). We include the quotation marks because the cladsificas based on an impression
of the systems from the available data and models. While waataguarantee that a sys-
tem is simple, we can easily recognize two complications Wit require more complex
models.

The first complication is that some primary lenses have lesssive satellite galaxies in-
side or near their Einstein rings. This includes two of theetdelay lenses, RXJ0911+0551
and B1608+656. RXJ0911+0551 could simply be a projectidecefsince neither lens
galaxy shows irregular isophotes. Here the implicatiomfedels may simply be the need
to include all the parameters (mass, position, ellipticity required to describe the sec-
ond lens galaxy, and with more parameters we would expeettgreincertainties iio.

In B1608+656, however, the lens galaxies show the heavifjudied isophotes typical of
galaxies undergoing a disruptive interaction. How one ghoodel such a system is un-
clear. If there was once dark matter associated with eadteafdlaxies, how is it distributed
now? Is it still associated with the individual galaxies?sHiasettled into an equilibrium
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configuration? While B1608+656 can be well fit with standamalsl models (Fassnacht et
al. 2002), these complications have yet to be explored.

The second complication occurs when the primary lens is alveenf a more massive (X-
ray) cluster, as in the time delay lenses RXJ0911+0551 (&foegal. 2001) and Q0957+561
(Chartas et al. 2002). The cluster model is critical to ipteting these systems (sde 81.4).
The cluster surface density at the position of the lensx 0.2) leads to large corrections
to the time delay estimates and the higher-order pertuhstare crucial to obtaining a
good model. For example, models in which the Q0957+561 alughs treated simply as
an external shear are grossly incorrect (see the review 8608661 models in Keeton et
al. 2000). In addition to the uncertainties in the clustedaiatself, we must also decide
how to include and model the other cluster galaxies near ttingapy lens. Thus, lenses in
clusters have many reasonable degrees of freedom beyoseldhithe “simple” lenses.

16 Results: The Hubble Constant and Dark Matter

With our understanding of the theory and observations olighges we will now ex-
plore their implications foHg. We focus on the “simple” lenses PG1115+080, SBS1520+530,
B1600+434, and HE2149-2745. We only comment on the interoa of the HE1104—
1805 delay because the measurementis too recent to havitereneted carefully. We will
briefly discuss the more complicated systems RXJ0911+@38357+561, and B1608+656,
and we will not discuss the systems with problematic timagebr astrometry.

The most common, simple, realistic model of a lens consises singular isothermal
ellipsoid (SIE) in an external (tidal) shear field (Keetonaét 1997). The model has 7
parameters (the lens position, mass, ellipticity, majds axientation for the SIE, and the
shear amplitude and orientation). It has many degrees efifna associated with the angu-
lar structure of the potential, but the radial structuredsdiwith () ~ 1/2. For comparison,
a two-image (four-image) lens supplies 5 (13) constraintaimmy model of the potential: 2
(6) from the relative positions of the images, 1 (3) from thex flatios of the images, 0 (2)
from the inter-image time delay ratios, and 2 from the lersitmm. With the addition of ex-
tra components (satellites/clusters) for the more comigleses, this basic model provides
a good fit to all the time delay lenses except Q0957+561. Alfioa naive counting of
the degrees of freedomifor = —2 and 6, respectively) suggests that estimatddpafould
be underconstrained for two-image lenses and overconsttdor four-image lenses, the
uncertainties are actually dominated by those of the timaydmeasurements and the as-
trometry in both cases. This is what we expect frdm181.3 — tbedehhas no degrees of
freedom that changé:) or ), so there will be little contribution to the uncertaintiesHy
from the model for the potential.

If we use a model that includes parameters to control thardeénsity profile (i.e.(x)),
for example by adding a halo truncation radau® the SIS profile [the pseudo-Jaffe model,
p o< r2(r2+a?)™; e.qg., Impey et al. 1998; Burud et al. 2002ahen we find the expected
correlation betweea andHy, — as we make the halo more concentrated (smallethe
estimate ofHy rises from the value for the SIS profilé«) = 1/2 asa — oo) to the value
for a point mass{{<) = 0 asa — 0), with the fastest changes occurring wheeis similar to
the Einstein radius of the lens. We show an example of suchdehior PG1115+080 in
FigurdLB. This case is somewhat more complicated thanesgseudo-Jaffe model because

* This is simply an example. The same behavior would be seaanfoother parametric model in which the radial
density profile can be adjusted.
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there is an additional contribution to the surface densiynfthe group to which the lens
galaxy belongs. As long as the structure of the radial dgpsdfile is fixed (constard), the
uncertainties are again dominated by the uncertaintidseiiine delay. Unfortunately, the
goodness of fity?(a), shows too little dependence amo determinddo uniquely. In general,
two-image lenses have too few constraints, and the extrat@onts supplied by a four-
image lens constrain the angular structure rather thanatthi@lrstructure of the potential.
This basic problem holds for all existing models of the catiample of time delay lenses.

The inability of the present time delay lenses to directlgstaain the radial density pro-
file is the major problem for using them to determlidg Fortunately, it is a consequence
of the available data on the current sample rather than aafuedtal limitation, as we dis-
cuss in the next section[(&1.7). It is, however, a simplegtaffl — models with less dark
matter (lower({x), more centrally concentrated densities) produce highdabtéuconstants
than those with more dark matter. We do have some theorditiugd on the value of k).

In particular, we can be confident that the surface densibpisaded by two limiting mod-
els. The mass distribution should not be more compact thatuthinosity distribution, so
a constant mass-to-light ratimM(/L) model should set a lower limit ofx) 2 (k)m/L ~ 0.2,
and an upper limit on estimates Bf. We are also confident that the typical lens should
not have a rising rotation curve at 1-2 optical effectiveiireldm the center of the lens
galaxy. Thus, the SIS model is probably the least concettraasonable model, setting an
upper bound onix) < (k)ss=1/2, and a lower limit on estimates bl. Figure[L% shows
joint estimates ofHy from the four simple lenses for these two limiting mass distions
(Kochanek 2003b). The results for the individual lensesauéually consistent and are un-
changed by the new. D49+ 0.004 day delay for the £A, images in PG1115+080 (Chartas
2003). For galaxies with isothermal profiles we fiHg = 48+3 km s* Mpc™, and for
galaxies with constaril/L we findHo = 71+ 3 km s Mpc™. While our best prior es-
timate for the mass distribution is the isothermal profile(&§LF), the lens galaxies would
have to have constaiM /L to match Key Project estimate éf = 724+8 km s* Mpc™?
(Freedman et al. 2001).

The difference between these two limits is entirely exp@diby the differences i)
andn between the SIS and constavyL models. In fact, it is possible to reduce tHg
estimates for each simple lens to an approximation formtdas A(1 - (x)) +B(x)(n—-1).
The coefficientsA and|B| =~ A/10, are derived from the image positions using the simple
theory from §L.B. These approximations reproduce numegsalts using ellipsoidal lens
models to accuracies of 3 km!sMpc™ (Kochanek 2002). For example, in Figurel1.3
we also show the estimate éfy computed based on the simple theory B 1.3 and the
annular surface density«)) and slope /) of the numerical models. The agreement with
the full numerical solutions is excellent, even though thmerical models include both the
ellipsoidal lens galaxy and a group. No matter what the masshiition is, the five lenses
PG1115+080, SBS1520+530, B1600+434, PKS1830+24rid HE2149-2745 have very
similar dark matter halos. For a fixed slopehe five systems are consistent with a common
value for the surface density of

(k) = 1-1.07h+0.14()- 1)(1-h) +0.04 (1.11)

* PKS1830-211 is included based on the Winn et al. (2002) mafd#ie HST imaging data as a single lens
galaxy. Courbin et al. (2002) prefer an interpretation withltiple lens galaxies which would invalidate the
analysis.
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Fig. 1.3. Hp estimates for PG1115+080. The lens galaxy is modeled aipaatial pseudo-
Jaffe modelp o r?(r>+a?)™, and the nearby group is modeled as an SIS. As the break
radiusa — oo the pseudo-Jaffe model becomes an SIS model, and as therbdiasa — 0

it becomes a point mass. The heavy solid cuhg¢) shows the dependenceld§ on the
break radius for the exact, nonlinear fits of the model to 84 PL5+080 data. The heavy
dashed curvehaing) is the value found using our simple theor{Z(81.3) of timeagtsl The
agreement of the exact and scaling solutions is typical.lighesolid line shows the average
surface densityx) in the annulus between the images, and the light dashedHmessthe
inverse of the logarithmic slope in the annulus. For an SIS model we would héve=1/2
andn™ =1/2, as shown by the horizontal line. When the break radiuggelaompared to
the Einstein radius (indicated by the vertical line), theate density is slightly higher and
the slope is slightly shallower than for the SIS model beeafshe added surface density
from the group. As we make the lens galaxy more compact bycieduhe break radius,
the surface density decreases and the slope becomes sleagerg to a rise irHy. As
the galaxy becomes very compact, the surface density nedtitistein ring is dominated
by the group rather than the galaxy, so the surface densgyoaphes a constant and the
logarithmic slope approaches the value corresponding tmstant density sheeg € 1).

whereHy = 10th km s Mpc™ and there is an upper limit of, < 0.07 on the intrinsic scat-
ter of (). Thus, time delay lenses provide a new window into the stinecind homogeneity
of dark matter halos, regardless of the actual valudpf

There is an enormous range of parametric models that catridbe how the extent of
the halo affectgx) and henceHy — the pseudo-Jaffe model we used above is only one
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Fig. 1.4. Hg likelihood distributions. The curves show the joint likediod functions for
Ho using the four simple lenses PG1115+080, SBS1520+530, B¥&), and HE2149—
2745 and assuming either an SIS model (high flat rotation curve) or a constam/L
model (low(x), declining rotation curve). The heavy dashed curves shevetimsequence
of including the X-ray time delay for PG1115+080 from Char{2003) in the models.
The light dashed curve shows a Gaussian model for the Keg&rmgsult thaH, = 72+

8 km st Mpc™.

example. It is useful, however, to use a physically motgat®del where the lens galaxy is
embedded in a standard NFW (Navarro, Frenk, & White 1996)lprisalo. The lens galaxy
consists of the baryons that have cooled to form stars, sontes of the visible galaxy
can be parameterized using the cold baryon fracfiggq of the halo, and for these CDM
halo models the value gk) is controlled by the cold baryon fraction (Kochanek 2003a).
A constantM/L model is the limitf, g — 1 (With (k) >~ 0.2, n ~ 3). Since the baryonic
mass fraction of a CDM halo should not exceed the globalifsacif f, ~ 0.15+0.05 (e.g.,
Wang, Tegmark, & Zaldarriaga 2002), we cannot use condigiit models without also
abandoning CDM. As we reduci cq, We are adding mass to an extended halo around
the lens, leading to an increase () and a decrease . For fycqq =~ 0.02 the model
closely resembles the SIS modékY ~ 1/2, n ~ 2). If we reducefycqq further, the mass
distribution begins to approach that of the NFW halo withay cold baryons. FigufeZ.5
shows how(x) andHy depend onfy coiq for PG1115+080, SBS1520+530, B1600+434 and
HE2149-2745. Whetfi, ;o ~ 0.02, the CDM models have parameters very similar to the
SIS model, and we obtain a very similar estimateHgf= 52+ 6 km s* Mpc™ (95%
confidence). If all baryons cool, arfgcoq = fp, then we obtaiHy = 65+ 6 km s Mpc™
(95% confidence), which is still lower than the Key Projetimates.

We excluded the lenses requiring significantly more conapdid models with multiple
lens galaxies or very strong perturbations from clusténselhave yet to reach a consensus
on the mass distribution of relatively isolated lenseseémas premature to extend the dis-
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Fig. 1.5. Hp in CDM halo models. The left panel shows-1x) for the “simple” lenses
(PG1115+080, SBS1520+530, B1600+434, and HE2149-274&)asction of the cold
baryon fractionf, co1g. The solid (dashed) curves include (exclude) the adialsaticpres-
sion of the dark matter by the baryons. The horizontal linewghthe value for an SIS
potential. The right panel shows the resulting estimatddoofvhere the shaded envelope
bracketing the curves is the 95% confidence region for thebmed lens sample. The hor-
izontal band shows the Key Project estimate. For lafggjiq, the density(x) decreases
and the local slope steepens, leading to larger valuedf The vertical bands in the two
panels show the lower bound dp from local inventories and the upper bound from the
CMB.

cussion to still more complicated systems. We can, howsbeny that the clusters lenses
require significant contributions t@:) from the cluster in order to produce the sahieas
the more isolated systems. As we discussed1nl §1.5 the thoee complex systems are
RXJ0911+0551, Q0957+561 and B1608+656.

RXJ0911+0551 is very strongly perturbed by the nearby Xetagter (Morgan et al. 2001;
Hjorth et al. 2002). Kochanek (2003b) foukld = 49+ 5 km st Mpc™ if the primary lens
and its satellite were isothermal aHg = 67+5 km s* Mpc™ if they had constant mass-to-
light ratios. The higher value ddp = 71+ 4 km s* Mpc™ obtained by Hjorth et al. (2002)
can be understood by combiningg§1.3 ahdE1.4 with the difigze in the models. In partic-
ular, Hjorth et al. (2002) truncated the halo of the primanyd near the Einstein radius and
used a lower mass cluster, both of which lowef and raiseH,. The Hjorth et al. (2002)
models also included many more cluster galaxies assumiad frasses and halo sizes.

QO0957+561 is a special case because the primary lens galake ibrightest cluster
galaxy and it lies nearly at the cluster center (Keeton e2@00; Chartas et al. 2002). As
a result, the lens modeling problems are particularly ss\ard Keeton et al. (2000) found
that all previous models (most recently, Barkana et al. 1B@®#nstein & Fischer 1999; and
Chae 1999) were incompatible with the observed geomettyedlieinsed host galaxy. While
Keeton et al. (2000) found models consistent with the stingodf the lensed host, they cov-
ered a range of almost25% in their estimates dfly. A satisfactory treatment of this lens
remains elusive.

HE1104-1805 had its delay measured (Ofek & Maoz 2003) justeasompleted this
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review. Assuming thé\t = 161+ 7 day delay is correct, a standard SIE model of this system
predicts a very higiHg ~ 90 km s Mpc™. The geometry of this system and the fact
that the inner image is brighter than the outer image botlhyesighat HE1104-1805 lies in
an anomalously high tidal shear field, while the standardehiodludes a prior to keep the
external shear small. A prioris needed because a two-ineagesLipplies too few constraints
to determine both the ellipticity of the main lens and theeexal shear simultaneously. Since
the images and the lens in HE1104-1805 are nearly colireagrtomalously estimate for
the standard model may be an example of the shear degeneeabyiefly mentioned in
g1.3. At present the model surveys needed to understan@whdelay have not been made.
Observations of the geometry of the host galaxy Einsteig will resolve any ambiguities
due to the shear in the near future (SEEI81.7).

The lens B1608+656 consists of two interacting galaxied, am we discussed il &l.5,
this leads to a greatly increased parameter space. Fas&tath(2002) used SIE models
for the two galaxies to finddp = 61-65 km s* Mpc™, depending on whether the lens
galaxy positions are taken from thkeband or -band lendHST images (the statistical errors
are negligible). The position differences are probablyated by extinction effects from the
dust in the lens galaxies. Like isothermal models of the fdahlenses, thédy estimate
is below local values, but the disagreement is smaller. &lmesdels correctly match the
observed time delay ratios.

17 Solving the Central Concentration Problem

We can take four approaches to solving the central condentrproblem. First,
the density profiles of galaxies are not a complete mysteny,vee could apply the con-
straints derived from observations of other (early-typepgies to the time delay systems.
Second, we could make new observations of the existing tial@ydenses in order to ob-
tain additional data that would constrain the density pesfilThird, we could measure the
time delays in the systems where the lens galaxies alreadyviell-constrained densities.
Fourth, we can use the statistical properties of time dedagds to break the degeneracies
seen in individual lenses.

If we assume that the time delay lenses have the same demngitiuse as other early-type
galaxies, then models close to isothermal are favored. drwmels with extended or multi-
component sources, the lens models constrain the densitibdiions and the best fit mod-
els are usually very close to isothermal (e.g., Cohn et a12Winn, Rusin, & Kochanek
2003). Stellar dynamical observations of lenses also fesathermal models (e.g., Treu &
Koopmans 2002a). Stellar dynamical (e.g., Romanowsky &héoek 1999; Gerhard et
al. 2001) and X-ray (e.g., Loewenstein & Mushotzky 2003)estaations of nearby early-
type galaxies generally find flat rotation curves on the @at¢gcales. Finally, weak lensing
analyses require significant dark matter on large scalesiily-&/pe galaxies (McKay et
al. 2002). In general, the data on early-type galaxies seepneffer isothermal models on
the scales relevant to interpreting time delays, while tammd$/ /L models are firmly ruled
out. If we must ultimately rely on the assumption that thegikynprofiles of time delay
lenses are similar to those of other early-type galaxiesatiditional uncertainty added by
this assumption will be small and calculable. Moreoverabsumption is no different from
the assumptions of homogeneity used in other studies ofisitende scale.

We can avoid any such assumptions by determining the demsifijes of the time delay
lenses directly. One approach is to measure the kinemaipepties of the lens galaxy. Since
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the mass inside the Einstein ring is fixed by the image gegntbi velocity dispersion is
controlled by the central concentration of the densityul&Koopmans (2002b) apply this
method to PG1115+080 and argue that the observed velositediion requires a mass dis-
tribution between the isothermal and constiiftl limits with Hg = 59i%2 km st Mpc™.
Note, however, that with this velocity dispersion the lelasagy does not lie on the fun-
damental plane, which is very peculiar. A second approath isse deep infrared imag-
ing to determine the structure of the lensed host galaxy efjimsar (Kochanek, Keeton,
& McLeod 2001). The location and width of the Einstein ringpdads on both the ra-
dial and angular structure of the potential, although thesisieity to the radial structure
of the lens is weak when the annulus bracketing the lensedamis thin AR/(R) small;
Saha & Williams 2001). This method will work best for asymnietwo-image lenses
(AR/(R) =~ 1). The necessary data can be obtained Wi#T for most time delay lenses.

We can also focus our monitoring campaigns on lenses alrkadwn to have well-
constrained density profiles. For the reasons we have gldisdussed, systems with multi-
component sources, well-studied images of the host galasyetiar dynamical measure-
ments will have better constrained density profiles thasehwithout any additional con-
straints. We can also avoid most of the uncertainties in émesidy profile by measuring the
time delays of very low-redshift lenses. When the lens iy efgse to the observer, the im-
ages lie very close to the center of the lens where the stelias dominates. A constaviy/L
model then becomes a very good approximation and we need litler about the amount
or the distribution of the dark matter. The one such candidaipresent, Q2237+0305 at
z = 0.04, will have very short delays, but these could be measuyethtX-ray monitoring
program using th€handra observatory.

Finally, the statistical properties of larger samples ofgidelay lenses will also help to
solve the problem. We already saw i-31.6 that the “simplektdelay lenses must have
very similar densities, independentid§. This already means that the implications Fy
no longer depend on individual lenses. In some ways theaiityilof the densities is not
an advantage — it is actually easier to deterntilpaf the density distributions are inhomo-
geneous (Kochanek 2003b). On the other hand, there aredefitied approaches to using
the statistical properties of lens models to estimate patars that cannot be determined
from the models of the individual systems (see Kochanek R0D{e statistics of the prob-
lematic flux ratios observed in the lenses (Je€l§1.5) maypatsade a means of estimating
(k). Schechter & Wambsganss (2002) point out that in four-inggesar lenses there is
a tendency for the brightest saddle point image to be derfiadrmiompared to reasonable
lens models. Microlensing by the stars can naturally erpla¢ observations if the surface
density of stars is a small fraction of the total surface dgmear the images«(. < (x)),
which would rule out constamdl /L models where:,. ~ (x).

18 Conclusions

The determination ofly using gravitational lens time delays has come of age. The
last few years have seen a dramatic increase in the numbeglaf cheasurements, and
there is no barrier other than sociology to rapidly incnreggshe sample. The interpretation
of time delays requires a model for the gravitational patémif the lens. Fortunately, the
physics determining time delays is well understood, andtilg important variable is the
average surface density) of the lens near the images for which the delay is measured.
Unfortunately, there is a tendency in the literature to eahcather than to illuminate this
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understanding. Provided a lens does not lie in a cluster evtiner cluster potential cannot
be described by a simple expansion, any lens model thatdaslthe parameters needed to
vary the average surface density of the lens near the image® @&hange the ratio between
the quadrupole moment of the lens and the environment ieslatl the parameters needed
to model time delays, to estimate the Hubble constant, anthtterstand the systematic
uncertainties in the resultgl! differences between estimates of the Hubble constant for the
simple time delay lenses can be understood on this basis.

Models for the four time delay lenses that can be modeledgusisingle lens galaxy
predict thatHo = 484+ 3 km s Mpc™t if the lens galaxies have isothermal density profiles
with flat rotation curves, anHy = 71+ 3 km s Mpc™ if they have constant mass-to-light
ratios. The Key Project estimateldf = 7248 km s Mpc™ agrees with the lensing results
only if the lenses have little dark matter. We have strongtétcal prejudices and estimates
from other observations of early-type galaxies that we Ehtavor the isothermal models
over the constantl/L models. We feel that we have reached the point where thetsesul
from gravitational lens time delays deserve serious atteratind that there is a reasonable
likelihood that the local estimates Hf are too high. A modest investment of telescope time
would allow the measurement of roughly 5-10 time delays ear,yand these new delays
would rapidly test the current results. Other observatmftime delay lenses to measure
the velocity dispersions of the lens galaxies or to deteentire geometry of the lensed
images of the quasar host galaxy can be used to constraindbe distributions directly.
The systematic problems associated with the density prafdesoluble not only in theory
but also in practice, and the investment of the communiggsurces would be significantly
less that than already invested in the distance scale.

The time delay measurements also provide a new probe of tisitgstructure of galaxies
at the boundary between the baryonic and dark matter doetmerts of galaxies (projected
distances of 1-2 effective radii). Even if we ignore the att@alue ofHy, we can still study
the differences in the surface densities. For example, waltaw that the present sample of
simple lenses must have very similar surface densities fEgiion is very difficult to study
with other probes.

Finally, the time delay measurements can be used to deteicosmological parameters.
Time delays basically measure the distance to the lens gataxwe can make the same
sorts of cosmological measurements as Type la superndihe.Jariations inx) between
lens galaxies are small, as seem to be indicated by the préaen then the accuracy of
the differential measurements will be very good. The presample has little sensitivity
to the cosmological model even with the mass distributioedikecause the time delay
uncertainties are still too large and the redshift rang®dsrestricted 4 = 0.31 to Q72).

If we assume that other methods will determine the distaactofs more accurately and
rapidly, then we can use the time delays to study the evalwigalaxy mass distributions
with redshift.
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