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Abstract. The reconstruction of the density profile in clusters of
galaxies from the distortion of the images of faint background
galaxies is reconsidered. The inversion formula of Kaiser &
Squires is known to provide a quantitative way to perform this
reconstruction; however, the practical application of this for-
mula faces two problems of principle (besides problems related
to the analysis of the observational data): (1) the shear distribu-
tion of a lens cannot be inferred from the distortion of images,
but only a combination of shear and surface mass density can
be observed. (2) The inversion formula is exact only if one as-
sumes observational data on the whole lens plane, whereas in
reality, the size of the data field is limited by the size of the CCD.
We have considered a possible solution to the first problem in
a previous paper. Here we consider the second problem. It is
shown that the application of the inversion formula to a finite
data field induces systematic boundary effects. An alternative
inversion formula is derived, based on some recently published
results by Kaiser. We demonstrate, using synthetic data, that this
new inversion formula which does not require an extrapolation
of the data beyond the observed region, yields results which are
comparable with those from the Kaiser & Squires inversion in
their ‘noise levels’, but lack the systematic boundary effects.

Key words: gravitational lensing — dark matter — clusters of
galaxies

1. Introduction

The determination of the mass distribution in clusters of galax-
ies from observations of weakly distorted images of faint back-
ground galaxies has been recognized as an important tool in ob-
servational cosmology. With the pioneering papers of Tyson et
al. (1990) and Kaiser & Squires (1993; henceforth KS; see also
Kochanek 1990; Miralda-Escudé 1991), this new method for
cluster mass determination has been investigated quantitatively,
and several attempts of applying it to real data have been pub-
lished (Fahlman et al. 1994; Smail et al. 1994; Smail et al. 1995).
These first applications have demonstrated the great potential of
the method, and with the advent of 10 meter class telescopes, the
observational situation can be expected to improve dramatically
in the next few years. It is therefore of considerable interest to

develop and improve the method further. This includes a de-
tailed study of the determination of distortion parameters from
observations (e.g., Bonnet & Mellier 1995; Gould 1994; Kaiser
etal. 1995), as well as improvements of the underlying inversion
technique.

Kaiser & Squires have obtained an exact inversion equation,
which yields the surface mass density of the deflector in terms
of the shear distribution caused by the lens. Hence, if the shear
distribution could be obtained from the observation of distorted
images of background sources, the surface mass density of the
cluster could be reconstructed. However, the shear is not directly
an observable, as was pointed out in Schneider & Seitz (1995,
hereafter Paper I); nevertheless, for the case of weak lensing,
the observable quantity g (to be defined in Sect.2 below) is a
good approximation to the shear. In Seitz & Schneider (1995,
hereafter Paper II), the KS method was generalized to include
also the inner part of clusters where the distortion is no longer
necessarily weak. In that case, the shear is obtained iteratively
from the observables. Note that the strong lensing region of
clusters yields particularly strong constraints on the central mass
distribution.

In this paper, we want to tackle another problem associated
with the KS inversion formula (2.6), namely that it is exact only
if the ‘data’ on the shear are available over the whole lens plane.
In practice, however, the finite size of a CCD limits the size of
the data field, and in order to apply the inversion formula, an
assumption about the shear outside the data field is required.
In the above quoted papers the shear was effectively set to zero
outside the data field; with this assumption, boundary effects are
unavoidable. We have discussed this problem in Paper I where
it was shown that these boundary effects can cause artefacts in
the reconstructed mass distribution; this is particularly true if the
shape of the CCD deviates significantly from that of a square.
The ‘cure’ used in Paper II was an extrapolation of the distor-
tion field to larger distances, which has removed some of these
boundary effects; however, such an approach is justified only if
the cluster can be considered as an isolated mass distribution. In
general, however, this assumption need not be satisfied, and in
any case, one should aim for a method which does not make use
of any information which is not contained in the observational
data. It is therefore necessary to develop an inversion technique
which accounts for the finite size of the data field appropriately.
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In Sect. 2, the general idea for developing an inversion for-
mula is described, based on a recent paper by Kaiser (1994).
The resulting equation is exact on a finite data field and thus has
removed the boundary effects. In Sect. 3 the application of this
inversion to synthetic galaxy images is briefly described, and
in Sect. 4 several examples of this inversion are presented and
compared to the results from an KS-like inversion formula. Our
results are summarized and discussed in Sect. 5.

After this paper was submitted, Kaiser et al. (1994) have
used the scheme developed in the present paper to come up
with several other inversion formulae, one of which has been
further analyzed by Bartelmann (1995). In a subsequent paper,
in which we will present yet another inversion formula and com-
pare the different methods quantitatively, it will be shown that
the inversion formula developed here compares very favourable
with this other finite field method, and it is at most slightly more
noisy than the original KS method.

2. The inversion method

We use the same notation as in Papers I & II. Hence, for a mass
distribution described by its dimensionless surface mass density
x(0), the deflection potential ¥(8) is defined as

wo) = / d20' k(@) In|0—0'| @.1)
™ R?

where

Kk(0) = >©)
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is the ratio of the physical surface mass density 3(6) and the
critical surface mass density
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which depends on the distances Dy, Ds and Dy to the deflector
and source, and from the deflector to the source, respectively.
Throughout this paper we will assume that the lens is at a rel-
atively small redshift (e.g., a cluster at redshift z4 ~ 0.2), and
that the bulk of the faint galaxy distribution is at a redshift larger
than 0.6, say. In that case, the critical surface mass density be-
comes nearly independent of the accurate value of the source
redshift, and we shall assume that ¥, is the same for all faint
galaxies.

Since the background sources, which are taken to be very
faint galaxies, are much smaller in angular size than the charac-
teristic length scale on which the deflection potential changes,
the image of such a faint source can be described in terms of the
linearized mapping d3 = A(8) d0, where 3 denotes the angular
position on the source sphere, and

A©) = (1 o 1_?2_%)

+ 2.2)
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is the Jacobian matrix of the lens mapping, which is related to
the deflection potential ¢ through

K(O)= 3VH0)

1
7(0) = 5 (W2 —vu1)
10)=—Y12

where indices separated by a comma denote partial derivatives
with respect to ;. For details concerning these lensing relations,
cf. Schneider et al. (1992, henceforth SEF). Combining (2.1 &
3), and defining the complex shear v(8) = v;(0) + i72(8), one
obtains

(2.3)

v(8) = % / 2 d*0' 7 -0 k() , (2.4)
R
where
2 p2 :
@(0)= 01 92+216]62 (25)

lo|*

is a complex kernel. Since (2.4) is a convolution-type integral,
its inversion can be most easily performed by using Fourier
methods. With these, KS obtained

Kk(0) = % / d20" e [@*(0 -0" 7(0')] , (2.6)

R?

where Z2e(x) denotes the real part of the complex variable z,
and the asterisk denotes complex conjugation. Eq. (2.6) is es-
sentially the same as Eq.(2.1.15) of KS, in slightly different
notation. Note that the pair of Egs. (2.4) and (2.6) remains
meaningful even for mass distributions for which the deflec-
tion potential 1/ diverges.! Furthermore, note that adding a disk
of constant surface mass density does not change - inside the
disk; hence, since the data on y are available only in a finite
region of the lens plane, the inversion (2.6) is not unique, but
determined only up to an additive constant.

The problems with (2.6) are that, first, the integral extends
over the whole lens plane, whereas the observational data are
available on a finite region of the lens plane only, and second,
that the shear components are not observable directly. We have
dealt with this second problem in detail in PapersI & II. If one
assumes that the cluster is not critical, i.e., if the lens does not
produce any critical curves, then the quantity

0
00 = O

=T ) 2.7

is an observable (see also Sect. 3). The transformation between
source and image ellipticities are such that one cannot distin-
guish locally between g and 1/g* from image distortions; hence,
if one does not assume that the cluster is noncritical, there is a

! In order for the integral (2.1) to exist, x must decrease faster

than #~2 if no special symmetries are employed, whereas for
the existence of the integrals in (2.4) and (2.6), any decline of
K to zero is sufficient.
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local degeneracy between g and 1/g*. For a noncritical cluster,
lgl < 1, and this degeneracy does not occur (see Paper] for
more details). By inserting the definition (2.7) into (2.6), we
obtain

1
n(G):;/RZdZG’[ —K(0")].Z2e[Z*(0-0")g(0")] ,(2.8)

an equation which can be readily solved iteratively for «(8) for
a specified data set g(0).

In order to avoid the boundary effects which occur if (2.6)
or (2.8) are applied to data in a finite region, we make use of the
following relations, derived by Kaiser (1994): from appropriate
combinations of the partial derivatives of the relations (2.3), one
finds

VK(O) - _ (’Yl,] + 72,2 ) = U(e)

2.9
V2,1 — 71,2 29)

Hence, the gradient of « can be expressed in terms of the deriva-
tives of the shear components, so that «(6) can be obtained as
a line intergal

7]
K(0) = k(Oy) + / dl-u@ (2.10)
0,

Hence, by any one choice of the integration path from 6 to all
other points 6, one can in principle obtain (@) at all points,
up to an additive constant. However, it is clear that from noisy
data, one can not recover a density field in this way. In order
to reduce the noise in the reconstructed surface mass density
one must average over many paths, i.e., use the information on
the whole data field for each position 8, just as in the original
inversion equation (2.6). We shall now give a prescription of
how this averaging can be done.

Let the data field, on which «; is given, have rectangular
shape, of length 2L in the 1-direction, and 27 L in the 2-direction
(most of what follows is in fact not restricted to a rectangular
field, but this case will be most common in practice). Let b()\),
0 < XA < A, be a parametrization of the boundary curve of this
data field, and let1,(¢; 8),0 < t < 1, be a curve which connects
the point b(\) with the point 8. Then, by averaging (2.10) over
A [with 8y = b()\)], we obtain

1 /A b dIn(: 0)
n(O):—/ d)\/ dt >

1 A
X /0 dX &(b(X))

-U(\(; 0))
2.11)

The important point to note is that the second term does not
depend on 6, i.e., it is a constant, namely the mean of  over the
boundary. Since we already know that « can be determined only
up to an additive constant, for a given distribution of the shear
v, Eq. (2.11) does not introduce an additional uncertainty. Note
that we could have included in the integral of (2.11) a properly
normalized weight function of the form w(\), but this would be
equivalent to a reparametrization of the boundary curve. Note
that Eq. (2.11) is an exact inversion equation which makes use
only of the shear on the finite data field.
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The result of the integration (2.11) will depend on the choice
of the curves connecting the boundary and the points 0, if noisy
data are considered (for perfect data, the result is of course
independent of this choice, but in this case, already (2.10) would
be good enough). As was demonstrated in KS, their inversion
formula (2.6) also is not unique, but optimal in the sense that it
leads to the smallest errors — basically, (2.6) is the only inversion
formula which does not single out a specific direction. We now
want to rederive (2.6) from (2.11) and in this way find a hint for
an appropriate choice of the curves 1.

Hence, consider an isolated mass distribution (such that s
vanishes outside a ‘large’ circle on the lens plane). For a point
0, define the curves

1,(t;0)= (1 — R (COSL‘D +0

i.e., we use as parameter for the boundary curve the polar angle
at the point 6. Note that the starting points (¢ = 0) of the curves
(2.12) depend on 0, but for a sufficiently large value of R, this
is unimportant, since the additive term in (2.11) vanishes due to
the assumption of an isolated mass distribution. One then has

2m
w(6) = > / / dt d'*"(t 9.

Since the curves cover the circle of radius R exactly once, the
integral can be transformed to Cartesian coordinates by defining
o' = 1,(t; ); this yields

1 _ /
n(0)=g/d20’ I?e——g—-

_0'12

(2.12)

u(e") (2.13)

By inserting U from (2.9), and integrating by parts, one reob-
tains (2.6). The conclusion we can draw from this is that by an
appropriate choice of the curves 1y, we can obtain a result as
similar as possible to the inversion formula (2.6). The singular-
ity at @’ = @ of the integrand in (2.13) suggests that the curves
should be chosen such that they locally correspond to the radial
lines of a polar coordinate system centered on 6'; otherwise,
this singular behaviour would amplify local noise in the shear
data. To make this point clearer, note that we can rewrite (2.11)
as

K(0) = % /q ) d%e’

1 A
+K/0 dXx k(b)) ,

di(t,0)  dl(t,0) Ll (¢ 0)

/
dt dx dt v

where we have defined for two 2-dimensional vectors a and b,
axb=aby —axb

If we now choose the curves to be locally the radial lines of a
polar coordinate system around 0, then the resulting integrand
will locally agree with that in (2.13), i.e., agree locally with the
KS formula. The integration over the polar angle then removes
the singularity as @' — 6. On the other hand, we cannot choose
simply radial parts, since the starting points of the curves have
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Fig. 1. The choice of our integration curves
1,(¢; 0). In the upper left panel, the bound-
ary curves ¢(¢p, ) of the inner rectangles for
three different points @ (marked as crosses)
are shown, for n = 0.5 which is taken
throughout this paper. The three other panels
show the curves 1, according to these three

to be independent of 6, in order for the second term in (2.11) to
be a constant.

Here, we shall take the following choice: the boundary curve
of the rectangle is parametrized by the polar angle ¢ as seen
from the center of the rectangle. Then, for every point 6 in-
side the rectangle, we define a smaller rectangle of the same
shape and orientation as the outer one. We define the size of this
inner rectangle as follows: define Dy = min(L — 6, L + 6y),
and D, = min(rL — 6,,7L + 6,); then, if |6,/0,] < r, the
length of the rectangle in the 1-direction is chosen to be 20Dy,
and otherwise 2nD; /7, and 7 is a parameter between 0 and 1.
We have illustrated this choice in Fig. 1a. Let c(p; 0) be the
parametrization of the boundary curve of the small rectangle
as given explicitly in the Appendix, where now ¢ is the polar
angle as measured from 6. Then, the curves 1, are chosen such
that, for each 6, it is a straight line from b(y) to ¢(p; ), and
a radial line from ¢(¢p; 0) to @ (for details, see the Appendix).
In Fig. 1, these curves are drawn for several values of 8. With
this choice, we have satisfied the two basic requirements: the
starting points of the curves are independent of the value of 8,
and they are distributed like the radial coordinate lines near 6.
Of course, this choice is still largely arbitrary, and one cannot
expect that it yields an ‘optimal’ reconstruction of the surface
mass density. But as shall be demonstrated below, it removes
the systematic boundary effects inherent in applying (2.6) to a
finite data field.

As mentioned before, the shear - is not an observable, but
the quantity g (2.7) can be measured locally if the cluster is non-
critical. By inserting the definition (2.7) into (2.9), one obtains
(see Kaiser 1994)

points 6
VK(0) N S
- 1= g2 — g2
( lg’ 92) (2.14)
x( + a1 92 )(91,1+92,2)Eu(9),
9 l1—g 92,1 — 91,2
where

K(0) :=1n(1 — x(8)) (2.15)

Hence, it is possible to derive the gradient of the quantity K in
terms of the observable quantity g, and the integration method
for (2.15) can be chosen in the same way as for (2.9), i.e.,

1 [ bdl 0
K®=5- [ wéu4%lm@mm
(2.16)

1 27'!'
+;/ dp K(b(g)
T Jo

Of course, K can only be determined up to an additive constant,
or (1 — k) can only be determined up to a constant factor, which
expresses the fact (noted in Paper I and also by Kaiser 1994) that
there is a global invariance transformation of the surface mass
density which leaves the observable distortions unchanged (see
Sect. 3.4 of Paper I).

3. Application to synthetic data

As in Papers I & I, we generate distorted images of background
sources by distributing galaxies randomly onto the lens plane
(this is an approximately valid procedure, since the local slope
of the source counts of faint galaxies is such that the decrease
of the number density of galaxy images due to the solid angle
distortion by the light deflection is compensated by the magni-
fication bias; in other words, the local slope of the cumulative
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source counts is close to —1, in which case the number counts
are unchanged by lensing — see Sect. 12.1.1 of SEF). For each
galaxy, we draw an intrinsic ellipticity from an assumed ellip-
ticity distribution, assuming that the intrinsic orientation of the
sources are distributed randomly; note that this basic assump-
tion lies at the heart of all reconstruction methods. Then, for
a chosen surface mass distribution (which we want to recon-
struct), the local lensing parameters, i.e., surface mass density
and shear, are calculated at the position of each galaxy, and the
ellipticity of the lensed galaxy image is calculated from the in-
trinsic ellipticity and the lens parameters. This set of ‘observed’
images is then used to reconstruct the mass density of the lens.

In Papers I & I, we have considered the (complex) ellipticity

= Qu — Q2 +2iQ
Qu +Qxn

in terms of the tensor () of second brightness moments of an
image (and a similar definition applies for the intrinsic ellip-
ticity of the source). The local lens equation then yields the
transformation between the source and image ellipticity as

(3.1)

©__ 29+x+gx
1+ g +2.92e (gx")

X (3.2)

where ¢ is given by (2.7). If R € [0, 1] denotes the ratio of
the moduli of the eigenvalues of the moment tensor (), then the
modulus of x is |x| = (1 — R?)/(1 + R?). Here we want to use
a somewhat different ellipticity parameter €, previously used
also by other authors (e.g., Bonnet & Mellier 1995; Schramm
& Kayser 1994); the phase of € is defined to be the same as that
of x, and its modulus in terms of the ratio R of the moduli of the
eigenvalues of the moment tensor Q is |¢| = (1 — R)/(1 + R).
This leads to the relation between x and e:

2¢ ) X

1— /1= |x)?

analogous relations hold for the ellipticity of the sources. Since
we consider here only noncritical clusters, the transformation
between € and €® is unique and obtained by inserting (3.3) into
(3.2),

_ 2 33
XE TP G-

() _
e=— 9 (3.4)

(s) — gtre
S = L~ =

1+ g*e

‘We want to stress here that in the critical region of clusters (i.e.,
where the determinant of the matrix A (2.2) is negative), (3.4)
is no longer valid and has to be replaced by somewhat different
relations, whereas (3.2) is true in general. Hence, for the general
case which includes also critical clusters, the transformation
properties of € are much more complicated and one should work
in terms of . To work in terms of the quantity € is convenient
only in the noncritical case considered here. The reason why we
here prefer to work in terms of € instead of x is the convenient
property of the mean of e over a set of images,

(€=-g , (3.5)
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independent of the intrinsic ellipticity distribution (Schramm
& Kayser 1994) as long as the intrinsic orientation of the
sources are randomly distributed. The property (3.5) can be eas-
ily checked by angular integration of the relations (3.4). Further
investigations of the statistical properties of ¢ will be published
elsewhere.

Hence, (3.5) can be conveniently used to determine g lo-
cally, by averaging over a number of galaxies at each position.
Specifically, to determine an estimate for g(@), the same aver-
aging procedure as in Paper II is used,

s Wy €5
g9(0) = ——%; el (3.6)
with weights
0 — 0,
w; X eXp (—%) y (37)

and the smoothing scale Af can be chosen appropriately. As in
Paper II, the smoothing scale is adopted to the ‘strength’ of the
signal, i.e., smaller smoothing scales are employed in regions of
larger shear. For more details, see Paper II. In this way we have
calculated g on a grid in the lens plane, and obtained the partial
derivatives of the components of g by finite differencing. Hence,
the vector u also has been calculated on a grid. The t-integral in
(2.16) was then performed by bilinear interpolating on the grid.
The iteration in (2.8) converges after a few steps.

Another smoothing is introduced in the application of (2.6):
in order to avoid the singular denominator, we have multiplied
the integrand in (2.6) by a factor W([O - 0’[), where

z? z?
Wx)=1-— (1 + ﬁ) exp (—2—32>

as in Paper II. In all the applications shown below, the smoothing
introduced by (3.6) is much more important than the introduc-
tion of the factor W, since we choose s < Af.

For our illustrative calculations, we have assumed an intrin-
sic ellipticity distribution of the form

(3.8)

_|€(S)I2/p2

ps(e®) = (3.9

1
mp*(1 — e 1/7)°

where py(¢®)d2e® is the probability that the source elliptic-
ity lies within d2¢® of . Hence, the quantity p controls the
width of the intrinsic ellipticity distribution, and we expect that
with increasing p, the reconstructed mass density will become
noisier. In all cases presented below, we have fixed the source
density to be 40/(arcmin)?. In all cases, the field on which galaxy
images are distributed is slightly larger than the field shown in
the figures.
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Fig. 2. Surface mass density reconstruc-
tion for a single isothermal sphere with
finite core. The lens is at the center
of each frame, which is a square of
10 arcmin size. The lines plotted are con-
tours of constant «, and they are scaled
such that the spacing between two adja-
cent contours is 0.02 in In(1 — &). The
core radius of the lens is 1 arcmin. (a)—
upper left panel: the original mass dis-
tribution. (b)-upper right panel: recon-

struction with the KS method, i.e., using
(2.8), with ‘perfect data’, i.e., without
noise due to the discreteness of galaxy
images and their ellipticity distribution;
note that a reconstruction according to
(2.16) with perfect data would yield
the original mass distribution shown in
(a). The two lower panels are true re-
constructions, with a galaxy density of
40/(arcmin)?, and an ellipticity distribu-
tion of the form (3.9), with p = 0.2. The
smoothing scale A@ in (3.7) was cho-
sen to be 1 arcmin in regions of low dis-

tortions, and decreased as the distortions
2 4 become larger — cf. PaperII. (c)-lower

left panel: Reconstruction according to
9 (2.8). (d)-lower right panel: reconstruc-
tion using (2.16)
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4. Examples

In this section, we consider several examples of mass recon-
structions, which were performed by the methods described in
the preceding sections. As was remarked earlier, these recon-
struction methods yield In(1 — ) only up to an additive constant.
Therefore, in all figures which follow we plot contours of con-
stant k, which are spaced by 0.02 in K = In(1 — k).

As a first example, we consider a single isothermal sphere,
with data in a square-shaped field of sidelength 10 arcmin. The
surface mass density is shown in Fig. 2a. The lens was chosen to
have a coreradius of 1 arcmin, and a central surface mass density
of 0.8. In Fig. 2b we have plotted the result from the inversion
according to (2.8), where we have used the exact values for g at
each position. One can see that this method leads to systematic
boundary effects, namely local minima close to the sides of the
square, saddle points on the diagonals, and an increase of x
towards the corners. In addition, the contours deviate more and
more from their circular shape as the boundaries are approached.
As was mentioned before, these artefacts are due to the finite
region of the lens plane over which the integration in (2.8) is
performed. If we use the exact data for g in (2.16), we would
reobtain the original mass distribution.

In Figs.2c&d two reconstructions according to (2.8) and
(2.16) are shown, respectively. Here we use a galaxy density of
40/(arcmin)?, an ellipticity distribution of the sources according

to (3.9), with p = 0.2, and asmoothing scale of A§ = 1 arcmin in
the regions of weak distortions, with smaller smoothing scales
where the distortion signal becomes larger — see Paper I. By
comparing the two reconstructions, we first note that their ‘noise
levels’ are nearly identical. Hence, at first sight the quality of
the reconstructions from (2.8) and (2.16) is the same. How-
ever, a closer look then shows that the systematics, visible in
Fig. 2b, are also present in Fig. 2c: despite the noise, caused by
the discreteness of the galaxy images and their intrinsic elliptic-
ity distribution, one can still recognize the local minima near the
sides of the square and the rise of k towards the corners. These
features are not seen in Fig. 2d — though detailed features in the
maps which are due to the realization of the galaxy distribution
can be linked to each other, there seem to be fewer systematic
structures in the reconstruction according to (2.16). However,
in the example shown in Fig. 2, the systematic boundary effects
are at a fairly low level, affecting only contour levels which are
already fairly noisy due to the noise caused by the discreteness
of the galaxy images and the intrinsic ellipticity distribution.
On the other hand, the situation in Fig. 2 is most favourable for
the inversion formula (2.8), since it contains an isolated matter
distribution centered on a fairly large data field.

To see the systematic boundary effects more clearly, we have
plotted in Fig. 3 the analogous reconstruction with a rectangu-
lar data field with axis ratio 7 = 2/3. In Fig. 3b, the boundary
effects are obvious, with minima close to the sides of the rectan-
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gle, saddle points on the diagonals, and again with x increasing
towards the corners. These features are also seen in the recon-
struction performed with (2.8), Fig. 3¢, whereas they are largely
absent in the reconstruction in Fig. 3d, performed with (2.16).
Again, the noise level in the two reconstructions is about the
same, but the one in panel (d) lacks the systematic effects.

We give two further illustrations in Figs. 4 & 5. In Fig. 4, we
have taken the same lens model as in the previous two figures,
but choose the size of the data field to be 6 arcmin, and the lens
is placed close to the boundary of the frame. Figure 4b shows
that, as expected, the systematic effects increase relative to the
case that the lens was centered on the field. In particular, there
is a broad, very flat ‘plateau’ in the x distribution, and minima
between the center of the lens and the nearest boundaries. These
artefacts remain visible in the reconstruction, Fig. 4c, whereas
they are basically absent in the reconstruction shown in Fig. 4d.
Finally, in Fig. 5 we have plotted the reconstruction of alens con-
sisting of two spherical components. The systematics caused
by the inversion (2.8) are most clearly seen in Fig.5b, with
pronounced minima between the left lens component and the
boundary; these features survive nearly unchanged in the recon-
struction shown in Fig. 5c, whereas they are absolutely absent
in the reconstruction performed with (2.16), as can be seen in
Fig. 5d. To see this more clearly, the same data as in Fig. 5c,d are
plotted in Fig. 6. Here it can be seen that the boundary effects
are quite dramatic. In addition, this figure clearly shows that
the ‘amplitude’ in the variation of K = In(1 — k) over the field
is underestimated by the inversion formula (2.8), probably also
because the integration is truncated beyond the data field. The
reason why the contours in Fig. 5 are much smoother than in the
other cases is the strength of the lens here: first, there are two
lenses causing the distortions, instead of one, and in addition, the
shear between the two lenses is particularly strong, whereas an
isolated isothermal sphere does not lead to strong distortions, as

-4-20 2 4

Fig. 3. Same as in Fig. 2, but the data field
9 is now rectangular, with length 10 arcmin,
1 and side ratio of r = 2/3

long as itis noncritical. From the examples shown above, we can
conclude that the new inversion formula (2.16), which is based
on the differential equation (2.14) derived by Kaiser (1994), is
indeed useful: it lacks the systematic effects with which (2.8) is
burdened, and the noise level of the reconstructed surface mass
density is comparable to that obtained by (2.8). Since the in-
version formula (2.16) explicitly is constrained to data inside
the data field, it is not expected to show any systematic bound-
ary effects; however, this does not exclude that the noise level
increases towards the boundaries of the field.

These qualitative considerations show that the peaks of the
reconstructed mass distributions are not as high as the original
peaks; this is mainly due to the smoothing procedure which was
necessary to introduce. We can obtain much higher peaks, i.e.
comparable to those of the original mass distributions, if the
smoothing length is reduced. In that case, however, the recon-
structed mass profiles would be much noisier, and the contour
plots would be overcrowded with curves. In a subsequent pub-
lication (S. Seitz & Schneider, in preparation), we shall investi-
gate the reconstructed mass profiles, from several reconstruction
methods, in a quantitative way, using several intrinsic elliptic-
ity distributions and various smoothing lengths. There we shall
demonstrate that the reconstruction method developped here
does not significantly amplify noise to a greater degree than
that of KS, even for those situations where the KS formula is
least affected by boundary artefacts (like the situation shown in
Fig. 2, where an isolated mass distribution is centered on a fairly
large data field).

The deviations of the reconstructed contours from that of
the true mass distribution from both, the (non-linear version of
the) KS reconstruction and from our new method, are not un-
correlated, since they are drawn from the same synthetic data.
That is, apart from the boundary artefacts in the KS reconstruc-
tion, the deviations are fairly much the same (qualitatively) from
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both methods. This may at first seem surprising, since our new
method involves differentiation. However, the differentiation is
in fact replaced by finite differences, and so the reconstruction
equation (2.16) can in principle be replaced by a matrix equa-
tion, just like for the KS formula. However, the resulting expres-
sions are very complicated, whereas the integration technique
outlined after (3.7) is easy to implement.

5. Summary and discussion

In this paper we have investigated a new method to derive the
surface mass density of a lens (e.g., a cluster) from the distortion
of the images of background sources (faint galaxies). This clus-
ter inversion problem has been solved previously by Kaiser &
Squires (1993); they have derived an inversion equation which
is exact if the distortion data are available over the whole lens
plane, and is a very useful approximation if the data field ex-
tends over most of the lensing region. However, due the small
size of most currently used CCDs, this latter condition is not
always satisfied if the clusters have a large angular extent. It is
therefore desireable to have an inversion formula which explic-
itly makes use only of data in a finite field (i.e., the CCD). A
recently published result by Kaiser (1994) has been the starting
point of the current investigation; he expressed the gradient of
the quantity K = In(1 — &) in terms of observables (at least in

Fig. 4. Same as Fig. 2, but now the data
field is a square of sidelength 6 arcmin,
and the isothermal sphere is not centered
on the field, but close to one of its edges

the case of noncritical lenses, i.e., lenses which are not capable
of producing multiple images). By an appropriate integration
of that gradient, we have derived an explicit formula for K(8)
which uses only the distortion within a finite data field. The
resulting equation therefore is exact on a finite region. The sur-
prising result, demonstrated in Sect. 4, that the ‘noise’ of this
new inversion formula is not appreciably larger than that of the
KS inversion (2.8) makes this new method useful, since it is free
of systematic effects which are inherent in applying (2.8) to a
finite data field. We have provided several illustrations of these
systematic effects as a warning against careless application of
(2.8). In particular, we have shown in Fig. 3 that the results from
the inversion formula (2.8) should be interpreted with great care
if a rectangular CCD with side ratio not close to unity is used.
This point was already stressed in PaperII; we presently con-
sider the results of the inversion of the cluster 0016416 shown
in Fig. 7 of Smail et al. (1994) as not reliable. A comparison of
this figure with our Fig. 3b,c shows that their features at both
ends of the rectangle may simply be artefacts of the geometry
of the data field and the properties of (2.8). In order to check the
validity of this assertion, it would be useful to apply our new
inversion formula (2.16) to the data field of 0016+16. We also
want to note that there is no fundamental difficulty to generalize
(2.16) to the case of critical clusters, basically using the same
procedure as in Paper II.
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Though we believe that our inversion formula (2.16) is in
some sense superiour to (2.8), we are convinced that the present
formula is not the best one can obtain. We have described a set
of curves 1, which can be used in (2.16); however, the choice of
this set of curves was to a large degree arbitrary, except that we
had to satisfied two constraints which were discussed in Sect. 2.
Note that the inversion formula (2.8) is ‘optimal’ on R2. 1t is
therefore not surprising that the ‘noise level’ in some of our
examples is slightly larger if the reconstruction formula (2.16) is
used instead of (2.8). As was already remarked by Kaiser (1994),
one could construct an inversion formula from (2.14) even if
some parts of the data field cannot be used (e.g., because a bright
foreground galaxy outshines the faint background images), by
choosing curves I which avoid these unusable regions, although
it probably will be difficult to construct these curves in a way
to ‘minimize’ the noise in the resulting reconstruction.

It should be noted that in order to estimate the total mass
inside a circular aperture, one does not need a reconstruction
of the density profile, but can use a method outlined in Kaiser
et al. (1994), which they termed ‘aperture densitometry’, which
makes use only of the shear field outside the aperture. Hence,
using this method to determine the mass inside an aperture [of
course also uncertain by the normalization factor of (1 — )],
a ‘hole’ in the data field due to bright cluster galaxies does not
matter as long as it lies inside the aperture.

Fig. 5. Same as Fig. 4, but now the lens
consists of two components, each one
modelled as an isothermal sphere

It remains an open problem whether there exists also an
‘optimal’ inversion equation on a finite field, how this equation
looks like, and ‘how far’ our Eq. (2.16) is away from such an
optimal inversion formula. Since the observations of faint dis-
tortions requires great efforts, manpower and costs, the devel-
opment of the best theoretical tool to analyze the observational
data is certainly justified and necessary.
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Appendix

In this appendix, we give explicit equations for the curves
1,(t; @) which appear in the integral (2.16) and which are de-
scribed in Sect. 2. Define ®¢ = arctan r, where r is the side ratio
of the rectangle, and the four p-intervals I} = [—®q, ®o], I, =
[®g, 7 —DPpl, 3 = [ — Dy, T+ D], I = [+ ®g, 2w — Dg]. The
length of the inner rectangle around a point @ = |0| (cos ¥, sin )
is 2a(@), where
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1.0

40.8

Fig. 6. The same reconstructions as in Fig. 5, in a different graphical representation. Left and right panel correspond to the reconstruction
according to (2.8) and (2.16), respectively. This representation shows more clearly the boundary effects in the reconstruction by (2.8), i.e., the
rising of — K towards the corners, and the deep minimum of — K between the major peak and the boundary. These features are basically absent
in the reconstruction according to (2.16), but one also sees that the reconstruction according to (2.8) yields a somewhat smoother result. In
particular, the reconstruction according to (2.8) is somewhat better in the central part of the field

L -6 for¥ € I

_ L—6,/r fordel,
A=\ L4+6, forvel ° (A1)

L+6y/r forvely

and n € [0, 1] can be chosen appropriately. Throughout the
paper, we used = 1/2. The parametrization of the boundary
curve b(yp) of the data field is

Ls(p) forp € I)
_ ) rLo(yp) forp € I,
bly) = —Ls(p) forpely (42)
—rLo(p) forp e Iy
where
1 t
s(p) = (tan (p) ; o(p)= (Col w) (A3)

The boundary curve ¢(y; 6) of the inner rectangle around 6 is
then given by

a(8)s(p) forp € Ih

o ra(@)o(p) forpel,
c(p;0) =6+ —a(@)s(p)  forp € I (A4)

—ra(@)o(p) forp e ly

Then, the curves 1,(¢; @) which appear in (2.16) are given by

1,(t;0) =

(1 = 2t)b(p) + 2te(p;0)  fort € [0,1/2]
2 = 2t)e(p;0)+ (2t — 1)@ fort € [1/2,1]

(A5)
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