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Summary. The gravitational action of an ensemble of stars (e.g.,
in a galaxy) on the light of a compact background source is
studied, in extension of previous studies by Paczynski (1986) and
Kayser et al. (1986). We compute representative light curves of
sources which move relative to the star field, amplification
probabilities and the distribution of the amplification factor as a
function of the relative source position. Our numerical scheme
enables us to consider very large optical depth or, equivalently, a
large number ( $10000) of stars. Whereas for moderate optical
depth a typical light-curve is characterized by rather quiet
behaviour most of the time, interrupted by sudden ‘“‘outbursts”,
sources behind dense star fields tend to show a very irregular
flickering, without very dramatic changes of their apparent
luminosity. The amplification probability function shows a much
more complex behaviour than the analytically estimated I~ 2
dependence. We find a rather pronounced tendency of clustering
of caustics in the source plane.

In the light of recent results which indicate that a large fraction
of quasars is gravitationally micro-lensed, we propose the time-
dependent amplification by micro-lenses to be a reasonable
explanation for variability in at least some active galactic nuclei; in
particular, our results support the recent hypothesis (Ostriker and
Vietri, 1985) that the BL-Lac objects may be due to selective
amplification of quasars.
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1. Introduction

Since the discovery of the first gravitational lens (Walsh et al.,
1979) it was realized that individual stars in the lensing galaxy can
significantly influence the properties of the images of the lensed
source (Chang and Refsdal, 1979, 1984). Besides causing
difficulties in interpreting observed lens cases, this micro-lensing
could be an important tool to investigate the matter contents of
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galaxies (Gott, 1981; Canizares, 1981; Young, 1981). In addition,
compact objects — e.g. in galaxies — are efficient amplifiers of
background compact sources (Canizares, 1981, 1982; Vietri and
Ostriker, 1983; Vietri, 1985; Schneider, 1986a—c) and can
therefore have a significant impact on source counts.

Most investigations of micro-lensing were done by considering
only one compact object acting on light rays; however, this is
reasonable only if the “optical depth’ to micro-lensing x (defined
below in Sect. 2) is very small. The optical depth at the image
positions of multiple imaging lenses is expected not to be small;
hence, one is mostly interested in cases of large k. Investigations of
these situations necessarily require time consuming numerical
simulations. Young (1981) applied Monte-Carlo methods to this
lensing problem; he considered the shape of the image of an
extended source viewed through a star field in a galaxy. However,
this method allows to treat only a limited number of cases and is
not useful for statistical investigations of the amplification factor
of the images.

In quite a different manner Paczynski (1986) tried to find
(numerically) all images of a source behind a random field of stars
by solving the lens equation. Although this method gives
information on the position and amplification factors of
individual images, it is subject to several restrictions. First, it is
only applicable to point sources. Secondly, it is not known a priori
how many solutions of the lens equation exist, and his method
cannot assure to find all the brightest images. If one considers a
star field of N stars, the number of solutions of the lens equation
is approximately N, . Moreover, the computations have to be done
for every particular relative position of the source and is,
therefore, very time consuming and not well suited for statistical
considerations. He obtained light curves of point sources which
change their position relative to the lens which are the most
probable observable in micro-lensing situations.

Kayser et al. (1986, hereafter KRS) reconsidered the problem
tackled by Paczynski by using the ray shooting method (Schneider
and Weiss, 1986). This method allows to consider extended
sources, one can estimate the error introduced by considering only
a limited number of micro-images and the total amplification
factor is obtained for a whole range of source positions
simultaneously. The fact that no information about the position
of the micro-images is obtained with this method is unimportant,
since in typical lensing situations one can never resolve them
observationally. KRS obtained light curves for several source sizes
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as well as important information about the lensing geometry, e. g.
the critical lines (caustics) in the source and lens planes.

By improving the numerical method, we have extended the
work of KRS which is limited to moderate optical depth x < 0.4.
We obtain detailed information about the total amplification
factor of a macro-image (i.e. the sum of all micro-images) as a
function of the source position, the amplification probability
function and typical light curves for several source sizes. Our
computational scheme allows to treat rather high optical depth or,
equivalently, a large number of objects in the star field, and to
determine the amplification of extended sources with very high
accuracy.

In Sect. 2 we briefly describe the model and give the relevant
equations. The numerical method is outlined in Sect. 3. We
estimate the error caused by considering a finite number of stars
and show that it is completely negligible for our calculations
(Sect. 4). Results are given in Sect. 5, where we display the
amplification factor as a function of source position, from which
typical light curves and amplification probabilities are obtained.
We conclude with a discussion of the applicability of our results to
explain the variability of at least some compact active galactic
nuclei.

2. Description of the model

Gravitational lensing by a galaxy which is composed of compact
objects [i.e. objects of size < &,, see Eq. (1)] and interstellar matter
is a two scale problem: the gravitational field of the galaxy as a
whole produces one or several macro-images of a background
source, the relevant length scale being 1 —10 kpc. The light bundle
corresponding to a macro-image is subject to the gravitational
deflection of individual stars which cause a splitting into a large
number of micro-images. Here, the relevant length scale is

4GM D,D,\"?
§o=< 2 —st—d> (1)

(Refsdal, 1964), where M is the typical mass of the compact objects
and D,, D,, and D, are, respectively, the angular diameter
distance to the lens and source, and from the lens to the source.
For solar mass objects, one typically obtains &, ~ 10*cm for
cosmological distances of sources and lens. It is therefore
reasonable in considerations of micro-lensing to treat the large
scale gravitational field of the galaxy in linear approximation
while the deflection of a number of stars around the macro-image
position is explicitely computed. Since the deflection angle of a
compact object (“Einstein angle”) is a diverging function of the
impact parameter of a light ray, there are, in principle, about as
many micro-images as there are stars in the galaxy. However, they
are of quite different relative flux, which decreases with the
distance r,, of a star from the macro-image position asr *. Due to
this rapid decline of the amplification of images, it is sufficient to
consider only a limited number of stars and micro-images; the
* error introduced by this is estimated in Sect. 4 below.

In the following we assume that all stars in the galaxy are of
equal mass M; the galaxy can then be described by just two
functions, the surface mass density «, of the interstellar matter and
that of the compact objects k,, both measured in units of the
critical surface mass density

4nG DyDs\~*
%=<7r‘%i> @

(cf. Young, 1981, KRS). Measuring all lengths in the lens plane in
units of &, (1) and all lengths in the source plane in units of

X0=60D3/Dda (3)

the dimensionless number density of stars n, (number of stars per
dimensionless area) is related to x, by nn, =« .

Let x, = Kk, + k,, be the surface mass density of the smoothed-
out galaxy; macro-images are then described by the lens equation

x=r—ayr), “
where the “smooth” deflection a(r) is related to x, through

a ="'V [ d*rk,()lnlr—r'| ©)
]RZ

(cf. Schneider, 1985; Blandford et al., 1986); x is the dimensionless
source position vector and r the impact vector in the lens. A
solution of (4) for given source position x is called macro-image.
Consider now a macro-image r; for x = x;. Defining x' = x — x;,
r'=r —r,, the splitting into micro-images is described by

. (1=xe—7y 0 B
UG AR 1= ST

i=1 |"’—"i'|2

(see KRS), where .= . (r;) is the local density of the interstellar
matter, y is the shear produced by the galaxy as whole and is given
in terms of «(r;) by

e LA 2 LAY LAY
real G e () (52 ) d
and the r; are the position vectors relative to r, of the N stars
explicitely taken into account.

Equation (6) can now be used, applying the ray-shooting
method described below (Sect. 3), to obtain light curves and
amplification probabilities of extended sources. Beside of the
source size b, these quantities depend on the local density of
interstellar matter x,, the galactic shear y and the number density
of stars n,. As was shown by Paczynski (1986) there is a scaling
procedure which allows the determination of the physical
quantities (light curves, amplification probability) for a one-
parameter class of models (b, x, y, n,) simultaneously. That such
a relation should exist is clear from the fact that a homogeneous
sheet of matter simply acts as an ideal lens, thus changing merely
the length scales of the problem under consideration. In Appendix
A it is shown that two models with different ., x,, and k., say, are
equivalent, if the following relations for the shears, star densities
and source sizes are satisfied,

'=<%}%>w (72)
n, = '1—:—2—5 ny, (7b)
|tz
The amplification factors are related through
p=G:2f1 7d)

(for details see Appendix A). These scaling relations allow to
generalize the results shown in Sect. 5 for a whole class of models.
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3. The numerical method

As already mentioned, we computed the amplification factor of
extended sources as a function of source position by using the ray-
shooting method, which was described by Schneider and Weiss
(1986), Schneider (1986b), and KRS. With this method, a regular
grid of points r (in the following we drop the primes on r and x) of
the lens plane is mapped via (6) onto the source plane. These “‘light
rays” are then “‘collected” in pixels in the source plane, and the
number of rays in one pixel is then, up to an overall scaling factor,
the total amplification factor of a source of uniform brightness
whose (dimensionless) area equals the size of a pixel, provided the
area which the grid-points cover in the lens plane is as large as to
cover all possible images of the source at the position of the pixel.
In the situation we consider here, this last condition is not strictly
satisfied, due to the divergence of the Einstein angle; hence, there
are very distant micro-images not covered by the grid. In the next
Section it is shown that in our calculation this ““diffuse flux” is
always very small.

We considered a square-shaped area of length L in the source
plane and divided it into N pz pixel, where asa rule N, = 512, except
in one test case where N, =1024. The corresponding ‘‘sources”
are thus squares of length b= L /N,. If the deflecting mass
distribution were smoothed out, a rectangle of sides L2 and L)
would be mapped onto the square in the source plane, where
Li=LJ1—(k.+x,+7|"" and LI=L|1—(k +K,—7)| "
But due to the grainyness of the deflector, a much larger area of
the lens plane must be mapped onto the source plane.

We proceeded as follows. In an ellipse with semi-axis B and D
we randomly distributed N, = BDx,, stars, where the axial ratio
was taken to be B/D = g, where

1= (k5 —7)

[= (et 7)) ®

.
such that it would be mapped onto a circle if the smoothed-out
matter acts as deflector. Within this ellipse, a rectangle of sides L,
and L, was chosen, where L, L, > L2, L9, and L /L, = q. On this
“shooting area”, a grid of N, N, points (i.e., light rays) was
mapped onto the source plane (N;/N, = q), and the number of
rays which hit each pixel was counted. The amplification of a
source corresponding to a pixel in which N, rays are counted
is I=f,, Ny, where fi. =L L /(N,N,b%).

If the mapping of the grid points is made straightforwardly
using (6), one very soon runs into severe numerical limitations.
Since one would like to have f, rather small to get rid of significant
statistical errors in N,,, (note that, since a regular grid is mapped,
the statistical uncertainties are much smaller than those from
Poisson statistics, Ng/?, see KRS), a large number of grid points
are taken (on the order of 10° to 10!'?). Since one also wants to
consider large optical depths k =x,|1 — k.| ™', N, can also be
large (we took up to 8000 stars). Hence, in some of our models,
up to ~10'* single star deflection angles have to be computed
according to (6), which is far beyond reasonable computing
facilities.

A way out of those difficulties is provided by the following
method: We divided the shooting area in a number n, - n, of
shooting squares of length a=L /n, =L /n,. The deflection
angle of the stars [i.e., the sum in (6)] was then split into two parts:
the deflection caused by stars within a square of length ~15a
centered on the corresponding shooting square and the deflection
of all other (distant) stars. While the first part was computed
directly adding the individual deflection angles of the ““near” stars,
the second contribution for each grid point within the shooting
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square was estimated by expanding the deflection of all distant
stars about the center of the shooting square up to second order.
We have checked that this expansion method introduces no
noticeable error in the final results; at this point we like to point
out that the color graphics used to display our results (Sect. 5) also
provides an excellent error diagnostics.

Since we probed a large area of the lens plane, there are a lot of
shooting squares which contain no grid point which hits the
collection area in the source plane. Therefore, for each shooting
square we first mapped 9 grid points and tested whether at least
one of them is imaged within or near the collection area. If this was
the case, all grid-points of the shooting square had been mapped.
With this pre-selection method, it was possible to enlarge the
shooting area of the lens plane considerably.

4. Estimation of the neglected diffuse flux

A star well away from that light beam which would be produced
by the smoothed out matter distribution «,(r) causes a (faint)
micro-image of the source. We have estimated the flux of all these
micro-images which are produced by stars outside of the ellipse B,
D.

Consider a star at r, outside the ellipse. The mapping near that
star can be obtained approximately by treating all other stars as
being smoothed out; the lens equation then reads

e 1—x,—7 0 e r—r*z.
0 1—rx,+7y [r—r,l

Since r, lies outside the ellipse, one has |4r|=|r —r,| <r,, and
therefore,

®

Ar

x~R, - (10)
where
R*=<1—f(<)s—v 1—r(<)s+v>'*' a1
Consider the source at x = 0; one then obtains
Ar=R,/|IR_|*.

From the definition of the amplification factor,

I=|det(0x/0r)| " one finds I=|Ar|*=|R,|™* (see Schneider,
1986¢). The diffuse flux f; is then obtained by summing up the
amplification factors of all micro-images produced by stars
outside the ellipse with semi-axis B and D = B/q. Hence,

Jo=n, Jd*r|R, (] ™%,

where the integral extends over IR? minus the ellipse. Introducing
anew coordinate frame (g, ¢) by (r;,r,) = ¢ (Bcos ¢, D sin ¢), one
finds for |R

(12)

xl

IR, 1> =0*B*(1 —x,—7)?, 13)

where (8) was used. Thus, the integral (12) can be written as

Jo=n,2nBD [ 0do B o™ * (1 —x,—y)7*, 14
1

which is easily evaluated. Using (8) again, one finally obtains

Jo=ry(B- D)™, (15)
where
Uy =[(1-x)=y*|"! (16)
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Table 1. Description of the models shown in Figs. 1-3. See text for details

Model a b c d e f g h i j k 1
Ky 0.2 0.2 0.5 0.5 0.7 0.8 0.2 0.2 0.2 0.8 1.5 1.3
K, 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.3 0.2 2.0 0.0 0.0
y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.4 0.0 0.0 0.0
b 0.025 0.025 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0375 0.0125 0.0125
N, 245 245 288 288 2520 8000 500 300 400 320 5400 4680
e[ %] 0.08 0.08 1.04 1.04 0.65 0.60 0.27 0.25 0.15 0.19 0.50 1.20
s> 1.56 1.56 4.00 4.00 11.1 25.0 111 6.25 5.00 0.31 4.00 11.1
KD 1.51 1.68 3.11 3.81 15.1 17.4 11.7 3.71 3.76 0.31 2.65 10.5
ot 791.1 791.1 791.1 791.1 351.6 351.6 156.3 459.2  208.0 3164 2583 258.3
Amy, 0.0 0.0 0.0 0.0 1.0 1.4 14 0.6 06 — 40 -— 02 1.0
Amy,. 3.0 3.0 3.0 3.0 4.0 44 44 3.6 3.6 2.0 3.3 4.0
Ly 12.8 12.8 6.4 6.4 6.4 6.4 6.4 6.4 6.4 19.2 6.4 6.4

is the amplification factor of the source for the smooth mass
distribution, and should also be the average amplification in our
models. Note that the final result (15) agrees with Eq. (41) of Katz
et al. (1986), who derived that with a completely different method.

The parameters B and D of the ellipse used in the above
computations should not be confused with the ellipse (B, D) in
which the N, were distributed, since (B, D) strictly should agree
with the shooting area. However, since the shooting area was
chosen to be a rectangle, (15) only gives an estimate of the diffuse
flux (although a rather good one!). Choosing n BD ~ L, L,, we
roughly set BD ~ BD/3. Let ¢ = f,/{I,) be the relative diffuse flux,
one can estimate the number of stars N, necessary to get the

relative diffuse flux below &:
N, =k, BD ~3e ' k2(I,)>. (17)

This shows that N, can be quite large. E.g., if one takes ¢ = 0.01,
one obtains for a model with k, =y =0

2
N*=300< Ex >
1—x,

which is 4800 for ., = 0.8. As seen from Table 1, we took for this
model N, =8000; hence, the diffuse flux we neglected is well
below 1%,

5. Results

Applying the method described in Sect. 3, we have computed the
amplification factor as a function of the source position for several
values of the parameters «,, k. and y. The parameters of the 12
models we present here are listed in Table 1, and various results of
the calculations are given in Tables 1 and 2, and Figs. 1-3, and will
be discussed below. As is seen from Table 1, we have considered
optical depths up to 0.8; even in this case, the relative diffuse flux ¢
was very low, 0.6 %. In most cases, the smallest source size we
considered, b, was taken to be 0.0125, but in some cases, b was
chosen larger in order to have more stars in the rectangle of size
L2, LY (cf. Sect. 3). The quantity fo ' is the number of rays per
pixel which correspond to an amplification of unity. In all cases
considered here, one has {I,> f;; ! > 1000, which corresponds to a
Poisson statistics error of ~ 3 %; however, since for our method
the error is much less than Poissonian (cf. KRS), we except it to be
well below the 19 error level.

5.1. Amplification as a function of source position

In Fig. 1a-1, we have plotted the amplification factor as a function
of the source position. For this, the magnification

Am=251gl (18)
was coded as a colour: the interval between Am_;, and 4m,, (see
Table 1) was divided into 5 equal parts, corresponding to
(increasingly) blue, grayish blue, green, yellow, and red, and
within these 5 intervals, the 10 shades of the colour increases with
Am regularily. (Example: In Fig. 1h, Amy, =0.6, Am,, =3.6;
therefore, the interval between Am = 1.8 and Am = 2.4isshownas
green, and each shade of green corresponds to an interval of
Am=0.06.) Pixels with Am > Am_,, are shown in white, those
with Am < Amgy, in black. The length of the regions L of the
source plane shown are also listed in Table 1. (Note that, for
convenience, we have defined 4m to be positive for enhanced
source brightness, as opposed to the usual convention.)

Basically, the Figures speak for themselves, and one gets a very
good idea of the physical situation just by studying them carefully.
One can see a variety of critical structures (cf. Blandford et al.,
1986); for low optical depth (e.g., Fig. 1a and b), one obtains the
characteristic Chang-Refsdal (1979, 1984) critical lines and those
corresponding to double stars (Schneider and Weiss, 1986).
Although there is no external (galactic) shear in Fig. 1a and b, the
Chang-Refsdal structures appear due to the shear caused by the
neighbouring stars. As an example of critical lines caused by
double stars, consider the critical region to the lower right of the
center of Fig. 1a. We have verified that this isolated structure,
together with the two triangle-shaped regions in the relative upper
right and lower left direction are caused by a double star with (in
the notation of Schneider and Weiss, 1986) y <8 2. In
particular, this explains the occurrence of small triangle-shaped
critical structures in the Figures. For higher optical depth of
micro-lenses, it is no longer possible to direct to a specific
constellation of compact objects which accounts for a critical
structure; the critical structures become more complex with
increasing k.

One of the most surprising results of the computations is
visible in all cases: there is a strong tendency of critical structure to
cluster. E.g., in Fig. 1c and d there are very crowded regions, side
by side with a surprisingly large area where no critical line is
found. This behaviour is explained by the fact that the formation
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Table 2. The factor Q (24) for different source sizes and power law indices
o Source a b c d e f g h i j k 1
size
2.5 b 1.46 1.53 2.16 2.42 4.28 4.63 4.20 2.24 232 1.24 2.00 3.65
106 1.39 1.46 2.06 2.32 4.23 4.60 4.01 2.14 219  1.01 1.87 3.59
1006 1.31 1.33 1.78 1.89 4.44 4.71 3.83 2.01 1.92  0.65 1.45 3.73
3.0 b 2.69 2.82 5.48 680 194 22.8 20.7 6.00 6.38  2.10 465 142
105 2.22 2.39 4.76 6.05 13.6 221 17.8 5.00 530 1.23 4.00 136
1005 1.71 1.81 3.48 425 19.1 22.1 14.8 4.08 4.02 046 2.54 136
33 b 4.50 454 10.3 13.4 49.4 61.3 58.5 12.1 12.8 3.15 8.30 332
105 3.17 3.40 8.23 113 46.2 58.2 45.6 8.71 945 145 6.63 308
1005 2.02 2.26 5.32 7.15  46.5 56.6 33.7 6.31 6.35  0.38 365 298
3.6 b 3.42 7.92  20.6 27.7 128 168 174 26.7 27.7 4.97 15.6 79.0
105 4.81 5.04 14.6 21.6 116 155 120 15.6 17.4 1.73 11.4 70.7
1005 2.41 2.82 825 123 114 147 77.8 9.81 10.2 0.32 534 659
4.0 b 22.5 18.7 56.2 77.0 467 663 801 86.5 85.7 9.83 38.8 258
105 9.15 9.02 328 53.0 404 586 454 36.6 41.5 2.26 24.7 219
1005 3.06 3.82 151 26.3 383 529 241 17.8 19.4 0.26 9.11 192

of a critical line is due to the derivative of the deflection angle,
whereas its position is determined by the deflection itself. The
deflection, however, has the tendency to intensify any random
density enhancement of compact objects in the lens plane onto the
source plane, due to the mutual gravitational attraction.

This clustering has, at least, two severe consequences for our
analysis. First, due to the large-scale patterns, the area of the
source plane shown can not be expected to represent the average
structure of the source plane, but it shows a randomly selected part
of the amplification function. As a measure for the deviation of the
considered area from the average behaviour, we have computed
the mean amplification {I) over the area shown in each case and
compared that in Table 1 to the average amplification {I;) (16),
which is the amplification of the macro-image, due to flux-
conservation. As can be seen from Table 1, the deviation of <I)
from (Z;) is in some cases considerable. For this reason, we have
presented, for two sets of physical parameters, two computations
each (i.e. case a and b, and cand d, respectively), which can be seen
to be mutually different qualitatively; e.g., there is a much larger
concentration of critical lines in case d than in case c.

A second consequence of this clustering is directly related to
observation. Since there are large regions of the source plane
where the amplification function is very flat a source moving
relative to the lens (and, therefore, changing its position in the
source plane) can have a much more flatter light curve than one
would expect from simple independent point masses con-
siderations. In addition, since the patterns of the critical lines are
frequently much larger than, say, a Chang-Refsdal critical region,
one can also obtain flat light curves at considerable amplification.
This is shown below.

5.2. Light curves

In Fig. 2a-1 we have plotted the magnification 4m of sources of
size b, 10b and 505, as a function of the dimensionless distance

along several straight lines through the source plane, where the
unit of distance is yo (3). However, if the effective transverse
velocity is v [see KRS, Eq. (B9)], the curves shown in Fig. 2 are
light curves Am (¢), where the unit of time is

(19)

Again, the curves are easy to interprete and need not much
comment. High amplification events are mostly, although not in
any case, asymmetric, and often the characteristic U-shape
appears. For large sources, the light curves are much flatter and
more symmetric.

Even for small sources, large portions of the light curves do not
show considerable variations, as already mentioned above. For
low optical depth, the source is most of the time only weakly
magnified, and occasionally large (4m 22 -3 for the small
sources) variations occur. For high optical depth (e.g., casese, f, 1),
the magnification is always high, whereas the variationsin Am are
comparatively small.

Itis clear that the spatial resolution in our computations is not
sufficient to resolve the intensity peaks of the smallest sources.
This is, however, not a severe drawback, since in most cases the
form of these peaks can be derived analytically. In Appendix Bitis
shown that the amplification factor of a circular source of radius R
at a distance D from the critical line [where D is taken positive for
that side of the critical line to which the amplification of a point
source diverges, see, e.g., Blandford et al. (1986)] is

To=Xo/V.

I(D,R)=1,+a,R™ "> J(D/R), (20
where the function J(x) is given by (B7,B11) and shown in
Fig. B1, and the constants /, and a, can be obtained from the
numerical computations shown in Fig. 2. Note that (20) is only
valid if the source crosses an ordinary critical line and not a cusp
(cf. Blandford et al., 1986; Schneider and Weiss, 1986). The
signature of a crossing of a critical line in the light curves is the
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Fig. 1a-1. The amplification factor plotted as a function of the relative source position, for the cases a-1 described in Table 1. The colour coding is described in the
text below Eq. (18) with the values of Adm;, and Am,,, given in Table 1
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Fig. 2a-1. The magnification 4m (18) as a function of the source position along straight lines through the source plane, shown in Fig. 1, for the cases a—/ described

in Table 1. The solid lines correspond to a source size of b (Table 1), whereas the dotted and dashed line correspond to source sizes of 105 and 505, respectively.
The unit of length along the x-axis is x, (3). Considering these curves as light curves, the unit of time along the x-axis is 7, (19)
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Fig.2a-1 (continued)

typical asymmetric feature near the peaks. The symmetric peaks
stem from sources which pass near, but outside, a cusp.

Note that there are basically two time-scales, relevant for light
variations. The first one is the typical rise time to a peak in the
amplification. From (20) and Fig. B1 one can notice that this
corresponds to a displacement of 4x ~ R of the source across a
critical line; hence, the corresponding time-scale 7, is

T, =7 R, 21

57

where 1, is given by (19) and R is the dimensionless source size, or
in terms of the physical source size ¢ = y, R, one has

T =0/v, (22)
where again v is the effective velocity of transverse source motion
[KRS, Eq. (B9)].

The second time-scale one is interested in is the time between
two peaks. As already mentioned (and clearly visible from Fig. 2)
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Fig.2a-1 (continued)

this time is much more subject to large statistical fluctuations and
is therefore less useful than the rise-time 7, . From Fig. 2 one can
derive a mean time between peaks, 7,, given as

=119, (23)

where the factor fis ~4 fork =0.2, ~1 fork =0.5and ~0.2 for
k =0.8; it thus depends sensitively on the specific lens model.

5.3. Amplification probabilities

From the distribution of the amplification factors shown in Fig. 1,
one can determine the probability P (/) that a source is amplified
by a factor greater than 1. This probability function is shown in
Fig. 3a-1for sources of size b, 3b, 105, 30b, and 1005 in each case.
The maximum amplification obtained in each case depends
strongly on the source size.
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In general, the high-I part of the P(J) curve cuts off earlier for
larger sources, whereas P (/) is larger for larger sources in the small
I regime. It is clearly seen that the P(I) curve shows no I~ *-
behaviour as usually assumed for small sources (e.g., Canizares,
1981; Vietri and Ostriker, 1983) but shows much more com-
plicated behaviour for all values of 1. In some cases (e.g., ¢, 1), the
P (I) curve for the smallest source becomes very flat for a specific
value of I; from a comparison with the corresponding colour plots
one can notice that these values of I are those values at which the
amplification factor distribution obtains broad minima (e.g. for
case j one hasa flat “shoulder” in P (I) at1g I ~0; this corresponds
to several extended minima in Fig. 1j which have a yellow colour).
Due to the above-mentioned clustering of critical structure, the
P(I)-curves shown can only be considered as probability
distribution in a random region of the source plane, and deviate
probably from the mean probability distribution.

Due to amplification, the observed density of sources through
the star field under consideration is modified. Let N(S) be the
number density of sources at a certain redshift z; with flux greater
than S which one observes far away from any galaxy, then the
density of sources seen through the star field is

Nobs (S)=<I>~" [dIp (1) N(S/D),

where
d
p()=— 7 P()

is the differential probability distribution, and the factor (> !
accounts for the overall area distortion of the lens mapping (see
Schneider, 1986b). In particular, for a power law distribution,
N(S)oec S~ @1 where « is the slope of differential luminosity
function at z,, one obtains

Nobs (S)
N(S)

0= =y~ fdIp() 17V, 24
We have computed the value of Q from the P ({)-curves of Fig. 3
for several values of the source size and the power-law index a. The
results are displayed in Table 2. It can be seen that Q is an
increasing function of «. The sensitivity of Q on the source size
increases with o, but varies among the models. In particular,
whereas for models of low optical depth the dependence on the
source size is very strong, it is very much weaker for high optical
depth. The corresponding relative insensitivity of P (/) on the
source size can be seen from Fig. 3, and is due to the fact that for
high optical depth, the relative importance of critical lines
diminishes compared to extended high-amplification regions.

6. Discussion

We have considered the amplification caused by the gravitational
action of random star fields, as a function of the relative position
of the background source, extending previous computations of
Paczynski (1986) and KRS. Since especially the latter paper
presents a very clear discussion on the applications of this micro-
lensing on known cases of gravitational lensing, we can limit the
discussion here to a few points.

In contrast to the claim of Paczynski that multiple-star effects
become important for optical depth larger than 0.5, we find here
that even for much lower optical depth (0.1) the effects of
multiple stars can not be neglected. This is due to the tendency of
critical lines to cluster.

The results for high optical depth (e.g., cases ¢, f, and 1) show
that one can obtain very high amplification factors of a source, but
without large intensity changes similar to outburst, but more with
a flicker of the source, i.e. brightness variations of ~0.5mag. As
an example, consider the B-image of QSO 09574561 (Walsh et
al., 1979) for which the optical depth is expected to be very high. In
this case, y, &5 10° cm for solar mass lenses, hence our smallest
source size b=0.0125 for the cases of high optical depth
corresponds to ~6 10'*cm. If the continuum source is not
smaller than this, large changes of brightness cannot be expected.
In fact, if the source is a factor ~ 10 larger than the value given
above, the expected light curves should be rather smooth.

The broad absorption-line QSO IE 01044315 (Stocke et al.,
1984) has z, = 2.03 and is seen through a giant elliptical galaxy at
z;=0.11, only 10arcsecs away from its center. Using the
parameters of Stocke et al., we find that this case probably
corresponds to our k, = 0.2, k, = 0 computations (cases a and b);
hence, the light curves in Fig. 2a and b should apply in that case.
Supposing that the relevant transverse motion is given by the
transverse velocity v, of the local star field, relative to the line-of-
sight to the quasar, one obtains for solar mass objects

7o ~(v,/1000 km/s) "' 7.5 yr,
7, ~(0/10*° cm) (v,/1000 km/s) ~* months,

and
%o =107 cm;

hence, for a source of size ~10'° cm the solid curves in Fig. 2a and
b are applicable. The time-scale 7, implies that one should observe
intensity peaks of that source, on the average, every ~30yr;
however, as discussed earlier, this number is subject to large
statistical spread.

Beside the analysis of known cases of gravitational macro-
lensing, where our results can yield a large number of astrophysi-
cal informations (e.g., nature of galactic halos, source size and
structure; see the discussion in KRS), the main application we
have in mind is of a statistical nature. As was shown by Schneider
(1986d), even a small density of compact objects in the universe
has a major influence on the observed luminosity function of
AGNs, provided the intrinsic luminosity function is sufficiently
steep (as, e.g., indicated by the results of Veron, 1983) and the
source size g satisfies ¢ $10'7 (M/M3)'/? cm, as indicated by varia-
bility time-scales. If most of the amplification occurs by compact
objects in galaxies, the lensed AGNs should show light variations
similar to that in Fig. 2. However, the situation may be more com-
plex, if the source, in one spectral band, is composed of several
components. There are some good arguments in favour of this
possibility. Malkan and Moore (1986) have found that the optical
continuum of some quasars (including the prototype, 3C273, see
Impey and Malkan, 1986) is composed of at least three
components: a ‘‘blazar” component, characterized by its vari-
ability, high polarization and a steep power-law spectrum, a
“normal” quasar component, which has a flatter spectrum, and
the quasi-thermal UV-bump. VLBI-observations usually show
the multi-component nature of compact radio sources. The rapid
changes in the degree and position angle of polarization in some
blazars (see, e.g., Angle and Stockman, 1980) is sometimes
explained by independent luminosity variations of many highly
polarized components. If the different components are spatially
separated, the light curves of lensed objects may show quite
different behaviour from those shown in Fig. 2.
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The above-mentioned findings of Malkan and Moore must
also be seen in view of a recent suggestion by Ostriker and Vietri
(1985), that (some) BL Lac objects can be explained as gravi-
tationally (micro-)lensed and highly amplified quasars. In the light
of our result and those obtained by Schneider (1986d), we view
this hypothesis to be quite likely. In particular, there are some
objects which during their high luminosity stage appear as a
BL Lac object, whereas they turn into a “‘normal” quasar at lower
luminosity (see, .g., Arp et al., 1979). More general, the selective
amplification provided by micro-lensing may well change the
classification of an AGN. Since the probability to observe sources
being micro-lensed depends on the intrinsic luminosity function of
the parent population, this possible mixing of AGN classes by
lensing furthermore complicates the estimate of the probability
(see Schneider, 19864d).

We finally ask whether light variations similar to those shown
in Fig. 2 have actually been observed. Consider first the time-
scales involved. The time-scale for rapid luminosity rise (and
decline) 7, (22) is a factor ¢/v larger than the light crossing time in
the source. Hence, if the relevant source component moves
relativistically, these two time-scales agree. The only direct
evidence of relativistic motion in AGN comes from VLBI
observations of superluminal sources. Note that the fraction of
superluminal sources among compact radio sources is high
(Porcas, 1985). Of course, it is unknown how many AGN have
relativistically moving source components, but there is no reason
to assume this fraction to be small. Thus, it is no problem to
account for variability time-scales by lensing.

Lens-induced variability should cause light curves which are
symmetric on the average (where the average has to be taken over
several “outbursts”). We don’t see any evidence for pronounced
asymmetry in the optical light curves presented by the group at
Rosemary Hill (see Pica and Smith, 1983, and references therein).
The same is true for the radio light of BL Lac (Johnston et al.,
1984), a source for which relativistic motion is established (Mutel
et al., 1981). Another prediction of our model, which can be seen
from Fig. 2, is that sources which are lensed by star fields of
moderate (t ~0.5) optical depth should show phases of high
“activity”, with rather quiet phases in between. This has been
observed for several sources; e. g., BL Lac was very active between
1969 and 1973, but quiet from 1974 to 1980, where it became active
again. The quasar 1156+ 295, one of the most extremely variable
objects, was very inactive from 1950 to 1977, but active earlier in
the century and after 1977.

We are quite convinced that micro-lensing can account for the
variability of at least some AGN, and hope that this paper will
induce more discussions on this topic; especially, since it seems to
be a viable possibility to get rid of apparent super-Eddington
luminosity sources.

Appendix A: Scaling

In this Appendix we derive the scaling Eqgs. (7a)—(7d) by using
the method of Paczynski (1986). We start from the lens Eq. (6),
written in the form

1—x.—7 0 Yo or—v
= ¢ — . Al
* ( 0 1-xc+y>' & Tr=r? (A1
Defining, for x, %1,
X=|1-x| "x (A2a)

63
R=|1—x«|"r, (A2b)
R.=|1—x|"7r, (A2c)
this can be rewritten as

1-I' 0 Y% R-R,
X‘( 0 1+r> = R-R[* (A3)
where
-_r

F—Il_KCI. (A4)

The Egs. (A2a)-(A2c) correspond to a change of the length scales
in the source and lens planes. Equation (A 3) contains no k_ at all
and is, therefore, valid for all . + 1. Hence, the transformation
leading from (A 1) to (A 3) can be used to find the scaling relations
between models of different x,.

Consider first a model with vanishing interstellar surface mass
density, k,=k* =0, in which case (A1) and (A3) are formally
identical. The length scale in the lens plane & is related to &, for
the x, model described by (A1) through

%o

F—__ >0
0

(A3)

which is derived by considering a physical length &=¢,r
=¢,|1 —x,| YR, Similarly, the length scales in the source
plane are related through

2 =rol1—x | (A6)

Suppose the N, stars in (A1) are distributed over an ellipse of
semi-axis B and D. Then, the density of stars x, is given by

N
= Bp>
due to the scaling (A2c), in the k¥ =0 model the N, stars
are spread over an ellipse of semi-axis B* = |1 —«k,|'/* B, D* = |1
—k.|'? D, and therefore,

N*

KI:B*D*=

K
T - (A7)

The total amplification factor I of a point source is the sum of the
amplification of all images, i.e.

0x
I= ; det <5>k

where the sum is taken over all images of the source at x. Since
(A2) implies

ox\ 5 0X
det<6r> [1—x,| det<aR>

one obtains

-1

s>

I*=|1—x,|*1. (A8)

By use of (A 6), one finds that the amplification factors of extended
sources are related through (A 8), if the dimensionless source sizes
satisfy

b*=|1—x,|"%b. (A9)

Since the starred quantities are independent of «., the scaling
Egs. (7a)—(7d) can now be read off from (A4), (A7), (A9), and
(A8), respectively.
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Appendix B: Amplification of extended sources near a critical line

It is well-known that the number of images of a source changes by
two if and only if the source position changes across a critical line
(Bourassa and Kantowski, 1975; Chang and Refsdal, 1979, 1984,
Schneider and Weiss, 1986; Blandford et al., 1986). In these
papers, it was shown that the amplification factor of a point
source near a critical line is
I(x)=1I,+0(x)asx~ 2, (B1)
where x is the perpendicular distance to the critical line and two
images are created (destroyed) if the source crosses the critical line
from negative to positive (positive to negative) x. I, is the
amplification of all other images of the source, usually slowly
varying with x, and therefore taken to be constant over the region
under consideration, compared to that of the two ‘“‘critical”
images, the amplification of which is given by the second term in
(B1). Here, 6(x) is the Heaviside step function, and a, is a
constant, depending on the details of the lens mapping near the
critical line.

The amplification I of an extended source with surface
brightness distribution Y(x) is obtained as a weighted average of
the point source amplification over the source, i.e.
I=[d*x Y(x) L,(®))/[] d*x Y(x)], (B2)
where the integrals are taken over the support of Y.

We choose a coordinate frame in which the critical line is
locally described by x = 0. Consider a circular source of radius R
the center of which has the coordinates (D, 0). We will treat two
different cases here:

1. Source of uniform brightness

In this case, one has

X(x,y)=0[R? — (x — D)* — y*]. (B3)

Inserting this into (B2), integrating over y and using (B1) yields
2 max (0,D+ R)
0

|
R ax ©,D—R)

I(D,R) =1, + dx[R? — (x —D)?]*2x~12 (B4)

Substituting z = (x — D)/R and defining d = D/R, one finds

I(D,Ry=1I,+a,R™Y* J(DIR), (B5)
where

max (—d, +1)
J(d) = (2/m) [ dz(@ =) z+d)" V. (B6)

max (—d,—1)

Using Egs. (3.141.34) and (3.141.28) of Gradshteyn and Ryzhik
(1980, hereafter GR), on obtains

0

[\

4 - 212 14d\? 1+4d\2

| e qomon] (5 e () )
172 9 \1/2

) :|_(d_1)K|:<—1+d> ]}, for1<d

1 .

8 1/2
3o +ad)Y {dE[<1

+
U

uniform
disc

O.SL

0
-2 0 2 4 6
d

Fig. B1. The function J(d) for sources of uniform brightness (B7) and Gaussian
brightness distribution (B11)

where K(x) and E(x) are the complete elliptical integrals of the
first and second kind, respectively (see GR, 8.11). The function
J(d), which is plotted in Fig. B1, determines the shape of the light
curve of a source which crosses the critical line. The amplitude of
the light curve is solely determined by a4, and R. The non-
smoothness of J(d) at d= —1 is due to the discontinuous surface
brightness distribution. Note the asymmetry of J(d), also seen in
Fig. 2 of the main text: it rises steeply from d= —1 to its
maximum at d=2/3; then it declines even steeper, reaching a
turning point at d ~ 1 and then it approaches the asymptotic &~ !/2
behaviour.

2. Source with Gaussian brightness distribution

Here one has

Y(x, y)=exp [ ) (BS)

(x—D)* +y? }
B R?
which after inserting into (B2) leads to the same Eq. (B5) asin the
case of a uniform brightness disk, but where now the function J(d)
is given by

Jd)y=n""2e" @ [ dxe *+2xdx12, (BY)
0

This can be integrated, using Eq. (3.462.1) of GR to yield

J(d)=2"Y4e"¢2D_, ,(—2"24), (B10)

where D, (x) is the parabolic cylinder function of degree v. Using
the notation of Abramowitz and Stegun (1965, hereafter AS), one
has D,(x)=U(—v—%,x) [AS, Eq. (19.3.1)]. An alternative
expression for J(d) is obtained by making use of Eq. (19.15.9) of
AS:

J(d)=2"3g 12 = a2 g2 K (~2112d), (B11)

ford< —1

for —1<d<1 (B7)
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where K,(x) is the modified Bessel function of order v (AS,
Chap.9).

The function J(d) (B10) is also plotted in Fig. B1, showing
that it is not as steep as the corresponding function (B7) for a
uniform disk. The maximum value at d ~0.541 is less and the
curve is broader than (B7). However, for d 23 both curves
basically agree, showing d~'/? behaviour.

Since the two surface brightness distributions we considered
here are both extreme, in the sense that the uniform disk has an
extremely sharp edge, whereas the Gauss source is extremely
smooth, we expect that other models for the brightness distri-
bution lead to light curves similar to those shown in Fig. B1.
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